Background
Complement is a central part of both the innate and adaptive immune response and its activation has traditionally been considered part of the immunosurveillance response against cancer. Its pro-inflammatory role and its contribution to the development of many illnesses associated with inflammatory states implicate complement in carcinogenesis.
Methods
We evaluated the role of three protein inhibitors of complement—cobra venom factor, humanized cobra venom factor, and recombinant staphylococcus aureus superantigen-like protein 7—in the setting of a transplantable murine colon cancer model. Outcomes were evaluated by monitoring tumor growth, and flow cytometry, ELISPOT, and quantitative real-time PCR were used to determine the impact of complement inhibition on the host immune response.
Results
Complement inhibitors were effective at depleting complement component C3 in tumor bearing mice and this was temporally correlated with a decreased rate of tumor growth during the establishment of tumors. Treatment with cobra venom factor resulted in increased CD8+ T cells as a percentage of tumor-infiltrating cells as well as a reduced immunosuppressive environment evidenced by decreased myeloid derived suppressor cells in splenocytes of treated mice. Complement inhibition resulted in increased expression of the chemoattractive cytokines CCL5, CXCL10, and CXCL11.
Discussion
Complement depletion represents a promising mode of immunotherapy in cancer by its ability to impair tumor growth by increasing the host’s effective immune response to tumor and diminishing the immunosuppressive effect created by the tumor microenvironment and ultimately could be utilized as a component of combination immunotherapy.
End resection of DNA double-strand breaks (DSBs) to form 3′ single-strand DNA (ssDNA) is critical to initiate the homologous recombination (HR) pathway of DSB repair. HR pathway is strictly limited in the G1-phase cells because of lack of homologous DNA as the templates. Exonuclease 1 (EXO1) is the key molecule responsible for 3′ ssDNA formation of DSB end resection. We revealed that EXO1 is inactivated in G1-phase cells via ubiquitination-mediated degradation, resulting from an elevated expression level of RING-box protein 1 (RBX1) in G1 phase. The increased RBX1 significantly prompted the neddylation of Cullin1 and contributed to the G1 phase-specific degradation of EXO1. Knockdown of RBX1 remarkedly attenuated the degradation of EXO1 and increased the end resection and HR activity in γ-irradiated G1-phase cells, as demonstrated by the increased formation of RPA32, BrdU, and RAD51 foci. And EXO1 depletion mitigated DNA repair defects due to RBX1 reduction. Moreover, increased autophosphorylation of DNA-PKcs at S2056 was found to be responsible for the higher expression level of the RBX1 in the G1 phase. Inactivation of DNA-PKcs decreased RBX1 expression, and simultaneously increased EXO1 expression and DSB end resection in G1-phase cells. This study demonstrates a new mechanism for restraining the HR pathway of DNA DSB repair in G1 phase via RBX1-prompted inactivation of EXO1.
Nonhomologous end joining (NHEJ) and homologous recombination (HR) are major repair pathways of DNA double-strand breaks (DSBs). The pathway choice of HR and NHEJ is tightly regulated in cellular response to DNA damage. Here, we demonstrate that the interaction of TIP60 with DNA-PKcs is attenuated specifically in S phase, which facilitates HR pathway activation. SUMO2 modification of TIP60 K430 mediated by PISA4 E3 ligase blocks its interaction with DNA-PKcs, whereas TIP60 K430R mutation recovers its interaction with DNA-PKcs, which results in abnormally increased phosphorylation of DNA-PKcs S2056 in S phase and marked inhibition of HR efficiency, but barely affects NHEJ activity. TIP60 K430R mutant cancer cells are more sensitive to radiation and PARP inhibitors in cancer cell killing and tumor growth inhibition. Collectively, coordinated regulation of TIP60 and DNA-PKcs facilitates HR pathway choice in S-phase cells. TIP60 K430R mutant is a potential target of radiation and PARPi cancer therapy.
DNA-dependent protein kinase catalytic subunit (DNA-PKcs) is the core component of DNA-PK complex in the nonhomologous end-joining (NHEJ) repair of DNA double-strand breaks, and its activity is strictly controlled by DNA-PKcs phosphorylation. The ubiquitin-like protein, NEDD8 is involved in regulation of DNA damage response, but it remains mysterious whether and how NEDD8-related neddylation affects DNA-PKcs and the NHEJ process. Here, we show that DNA-PKcs is poly-neddylated at its kinase domain. The neddylation E2-conjugating enzyme UBE2M and E3 ligase HUWE1 (HECT, UBA, and WWE domain containing E3 ubiquitin protein ligase 1) are responsible for the DNA-PKcs neddylation. Moreover, inhibition of HUWE1-dependent DNA-PKcs neddylation impairs DNA-PKcs autophosphorylation at Ser2056. Finally, depletion of HUWE1-dependent DNA-PKcs neddylation reduces the efficiency of NHEJ. These studies provide insights how neddylation modulates the activity of NHEJ core complex.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.