Two pairs of positive-and negative-parity doublet bands together with eight strong electric dipole transitions linking their yrast positive-and negative-parity bands have been identified in 78 Br. They are interpreted as multiple chiral doublet bands with octupole correlations, which is supported by the microscopic multidimensionally-constrained covariant density functional theory and triaxial particle rotor model calculations. This observation reports the first example of chiral geometry in octupole soft nuclei. DOI: 10.1103/PhysRevLett.116.112501 Spontaneous symmetry breaking is a fundamental concept in nature. As a many-body quantum system, the atomic nucleus carries a wealth of information on fundamental symmetries and symmetry breaking. As one example, chiral symmetry breaking in atomic nuclei has attracted considerable attention and intensive discussion since it was first predicted by Frauendorf and Meng [1]. They pointed out that, in the intrinsic frame of the rotating triaxial nucleus, the total angular momentum vector may lie outside the three principal planes, referred to as chiral geometry. The spontaneous chiral symmetry breaking in the laboratory frame may give rise to pairs of nearly degenerate ΔI ¼ 1 bands with the same parity, i.e., chiral doublet bands. Such chiral doublet bands were first observed in N ¼ 75 isotones [2]. So far, more than 30 experimental candidates have been reported in the A ∼ 80, 100, 130, and 190 mass regions [2][3][4][5][6][7][8][9][10][11][12][13][14][15][16][17][18][19][20].Based on constrained triaxial covariant density functional theory (CDFT) calculations, it has been suggested that multiple chiral doublet (MχD) bands can exist in a single nucleus [21][22][23][24][25][26]. The theoretical prediction of MχD bands stimulated lots of experimental efforts [27][28][29][30][31]. The first experimental evidence for MχD bands was reported in 133 Ce [27], which confirmed the manifestation of triaxial shape coexistence in this nucleus. Later, Kuti et al. reported a novel type of MχD bands with the same configuration in 103 Rh [29], which showed that chiral geometry can be robust against the increase of the intrinsic excitation energy.Compared to the A ∼ 130 and 100 mass regions, the A ∼ 80 mass region is a relatively new and less studied territory for the investigation of chiral symmetry breaking in rotating nuclei, with only one report of chiral doublet bands based on the πg 9=2 ⊗ νg 9=2 configuration in odd-odd 80 Br [18]. In 78 Br, the πg 9=2 ⊗ νg 9=2 band was suggested to have an obvious triaxial shape [32], which is suitable for the construction of chiral doublet bands.
Invisibility cloaking based on transformation optics has brought about unlimited space for reverie. However, the design and fabrication of transformation-optics-based cloaks still remain fairly challenging because of the complicated, even extreme, material prescriptions, including its meticulously engineered anisotropy, inhomogeneity and singularity. And almost all the state-of-the-art cloaking devices work within a narrow and invariable frequency band. Here, we propose a novel mechanism for all-dielectric temperature-controllable cloaks. A prototype device was designed and fabricated with SrTiO 3 ferroelectric cuboids as building blocks, and its cloaking effects were successfully demonstrated, including its frequency-agile invisibility by varying temperature. It revealed that the predesignated cloaking device based on our proposed strategy could be directly scaled in dimensions to operate at different frequency regions, without the necessity for further efforts of redesign. Our work opens the door towards the realization of tunable cloaking devices for various practical applications and provides a simple strategy to readily extend the cloaking band from microwave to terahertz regimes without the need for reconfiguration.
Adjustable zero-phase delay and equiphase control are demonstrated in single and multilayer dielectric particle arrays with high index and low loss. The polarization-independent near-zero permeability is the origin of the wave control near the first Mie magnetic resonance. The proposed design paves the way for subwavelength devices and opens up new avenues for the miniaturization and integration of THz and optical components.
Ferrite metamaterials based on the negative permeability of ferromagnetic resonance in ferrites are of great interest. However, such metamaterials face a limitation that the ferromagnetic resonance can only take place while an external magnetic field applied. Here, we demonstrate a metamaterial based on permanent magnetic ferrite which exhibits not only negative refraction but also near zero refraction without applied magnetic field. The wedge-shaped and slab-shaped structures of permanent magnetic ferrite-based metamaterials were prepared and the refraction properties were measured in a near-field scanning system. The negative and near zero refractive behaviors are confirmed by the measured spatial electric field maps. This work offers new opportunities for the development of ferrite-based metamaterials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.