Although meta-learning and metric learning have been widely applied for few-shot node classification (FSNC), some limitations still need to be addressed, such as expensive time costs for the meta-train and difficult of exploring the complex structure inherent the graph data. To address in issues, this paper proposes a new data augmentation method to conduct FSNC on the graph data including parameter initialization and parameter fine-tuning. Specifically, parameter initialization only conducts a multi-classification task on the base classes, resulting in good generalization ability and less time cost. Parameter fine-tuning designs two data augmentation methods (i.e., support augmentation and shot augmentation) on the novel classes to generate sufficient node features so that any traditional supervised classifiers can be used to classify the query set. As a result, the proposed method is the first work of data augmentation for FSNC. Experiment results show the effectiveness and the efficiency of our proposed method, compared to state-of-the-art methods, in terms of different classification tasks.
Self-supervised multiplex graph representation learning (SMGRL) has attracted increasing interest, but previous SMGRL methods still suffer from the following issues: (i) they focus on the common information only (but ignore the private information in graph structures) to lose some essential characteristics related to downstream tasks, and (ii) they ignore the redundant information in node representations of each graph. To solve these issues, this paper proposes a new SMGRL method by jointly mining the common information and the private information in the multiplex graph while minimizing the redundant information within node representations. Specifically, the proposed method investigates the decorrelation losses to extract the common information and minimize the redundant information, while investigating the reconstruction losses to maintain the private information. Comprehensive experimental results verify the superiority of the proposed method, on four public benchmark datasets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.