Accumulating evidence has demonstrated that the enhanced synaptic plasticity of nociceptive interneurons in the spinal dorsal horn is the basis of central sensitization in neuropathic pain. Our previous results demonstrated that sirtuin 1 (SIRT1), a nicotinamide adenine dinucleotide (NAD+)-dependent deacetylase, alleviates neuropathic pain in type 2 diabetes mellitus rats. SIRT1 has also been reported to regulate synaptic plasticity in different brain neurons. However, the role of SIRT1 in synaptic plasticity of spinal dorsal horn neurons remains unknown. In this study, we found that in the spinal dorsal horn of diabetic neuropathic pain (DNP) rats and db/db mice, decreased SIRT1 expression was accompanied by enhanced structural synaptic plasticity. The levels of postsynaptic density protein 95 (PSD-95), growth-associated protein 43 (GAP43), and synaptophysin increased in the spinal dorsal horn of DNP rats and db/db mice and in high glucose–cultured primary spinal neurons. Upregulation of spinal SIRT1 by SIRT1 activator SRT1720 relieved pain behavior, inhibited the enhanced structural synaptic plasticity in rats and db/db mice with DNP, and decreased the levels of synapse-associated proteins in DNP rats, db/db mice, and high glucose–cultured spinal neurons. SIRT1-shRNA induced pain behavior and enhanced structural synaptic plasticity in normal rats and increased synapse-associated proteins levels in normal rats and spinal neurons. Intrathecal injection of AAV-Cre-EGFP into SIRT1flox/flox mice also induced pain behavior and enhanced synaptic plasticity of the spinal dorsal horn neurons. These results suggest that SIRT1 plays an important role in the progression of DNP by regulating synaptic plasticity of spinal dorsal horn neurons.
CXC chemokine receptor 4 (CXCR4) has been suggested to play a critical role in cancer metastasis. Some studies have described CXCR4 nuclear localization in metastatic lesions of renal cell carcinoma (RCC), which has been suggested to be correlated with cancer metastasis. However, the underlying mechanism and clinical significance of CXCR4 nuclear localization remains unknown. Here, we show that CXCR4 nuclear localization is more likely to occur in RCC tissues, especially in metastases, and is associated with poor prognosis. CXCR4 nuclear localization requires its nuclear localization sequence (NLS, residues 146-RPRK-149). After the mutation of NLS in CXCR4, CXCR4 nuclear localization in RCC cells is lost. Nuclear localization of CXCR4 promoted RCC tumorigenicity both in vitro and in vivo. Mechanistically, we found that CXCR4 and hypoxia-inducible factor-1α (HIF-1α) colocalized in RCC cells and interacted with each other. Moreover, CXCR4 nuclear localization promoted nuclear accumulation of HIF-1α, thereby promoting the expression of genes downstream of HIF-1α. Reciprocally, nuclear HIF-1α promoted CXCR4 transcription, thus forming a feed-forward loop. Subcellular CXCR4 and HIF-1α expression levels were independent adverse prognostic factors and could be combined with TNM stage to generate a predictive nomogram of the clinical outcome of patients with RCC. Therefore, our findings indicate that CXCR4 nuclear translocation plays a critical role in RCC metastasis and may serve as a prognostic biomarker and potential therapeutic target.
Computer simulations of airflow patterns within the human upper respiratory tract (URT) are presented. The URT model includes airways of the head (nasal and oral), throat (pharyngeal and laryngeal), and lungs (trachea and main bronchi). The head and throat morphology was based on a cast of a medical school teaching model; tracheobronchial airways were defined mathematically. A body-fitted three-dimensional curvilinear grid system and a multiblock method were employed to graphically represent the surface geometries of the respective airways and to generate the corresponding mesh for computational fluid dynamics simulations. Our results suggest that for a prescribed phase of breath (i.e., inspiration or expiration), convective respiratory airflow patterns are highly dependent on flow rate values. Moreover, velocity profiles were quite different during inhalation and exhalation, both in terms of the sizes, strengths, and locations of localized features such as recirculation zones and air jets. Pressure losses during inhalation were 30-35% higher than for exhalation and were proportional to the square of the flow rate. Because particles are entrained and transported within airstreams, these results may have important applications to the targeted delivery of inhaled drugs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.