Following the acceptance of plate tectonics theory in the latter half of the 20th century, vicariance became the dominant explanation for the distributions of many plant and animal groups. In recent years, however, molecular-clock analyses have challenged a number of well-accepted hypotheses of vicariance. As a widespread group of insects with a fossil record dating back 300 My, cockroaches provide an ideal model for testing hypotheses of vicariance through plate tectonics versus transoceanic dispersal. However, their evolutionary history remains poorly understood, in part due to unresolved relationships among the nine recognized families. Here, we present a phylogenetic estimate of all extant cockroach families, as well as a timescale for their evolution, based on the complete mitochondrial genomes of 119 cockroach species. Divergence dating analyses indicated that the last common ancestor of all extant cockroaches appeared ∼235 Ma, ∼95 My prior to the appearance of fossils that can be assigned to extant families, and before the breakup of Pangaea began. We reconstructed the geographic ranges of ancestral cockroaches and found tentative support for vicariance through plate tectonics within and between several major lineages. We also found evidence of transoceanic dispersal in lineages found across the Australian, Indo-Malayan, African, and Madagascan regions. Our analyses provide evidence that both vicariance and dispersal have played important roles in shaping the distribution and diversity of these insects.
Cockroaches are among the most recognizable of all insects. In addition to their role as pests, they play a key ecological role as decomposers. Despite numerous studies of cockroach phylogeny in recent decades, relationships among most major lineages are yet to be resolved. Here we examine phylogenetic relationships among cockroaches based on five genes (mitochondrial 12S rRNA, 16S rRNA, COII; nuclear 28S rRNA and histone H3), and infer divergence times on the basis of 8 fossils. We included in our analyses sequences from 52 new species collected in China, representing 7 families. These were combined with data from a recent study that examined these same genes from 49 species, resulting in a significant increase in taxa analysed. Three major lineages, Corydioidea, Blaberoidea, and Blattoidea were recovered, the latter comprising Blattidae, Tryonicidae, Lamproblattidae, Anaplectidae, Cryptocercidae and Isoptera. The estimated age of the split between Mantodea and Blattodea ranged from 204.3 Ma to 289.1 Ma. Corydioidea was estimated to have diverged 209.7 Ma (180.5–244.3 Ma 95% confidence interval [CI]) from the remaining Blattodea. The clade Blattoidea diverged from their sister group, Blaberoidea, around 198.3 Ma (173.1–229.1 Ma). The addition of the extra taxa in this study has resulted in significantly higher levels of support for a number of previously recognized groupings.
We collected Ectobiidae cockroach specimens from 44 locations in the south of the Yangtze valley. We obtained 297 COI sequences specimens and carried out phylogenetic and divergence dating analyses, as well as species delimitation analysis using a General Mixed Yule Coalescent (GMYC) framework. The intraspecific and interspecific sequence divergence in Ectobiidae cockroaches ranged from 0.0 to 7.0% and 4.6 to 30.8%, respectively. GMYC analysis resulted in 53 (confidence interval: 37–65) entities (likelihood ratio = 103.63) including 14 downloaded species. The COI GMYC groups partly corresponded to the ectobiid species and 52 ectobiid species were delimited successfully based on the combination of GMYC result with morphological information. We used the molecular data and 6 cockroach fossil calibrations to obtain a preliminary estimate of the timescale of ectobiid evolution. The major subfamilies in the group were found to have diverged between ~125–110 Ma, and morphospecies pairs were found to have diverged ~10 or more Ma.
Seven new species of Ctenoneura Hanitsch, 1925, Ctenoneura bawangensis sp. nov., Ctenoneura delicata sp. nov., Ctenoneura elongata sp. nov., Ctenoneura heixuanfeng sp. nov., Ctenoneura helicata sp. nov., Ctenoneura papillaris sp. nov. and Ctenoneura qiuae sp. nov. are described from Hainan and Yunnan, China. Ctenoneura simulans Bey-Bienko, 1969 is redescribed and illustrated. Male genitalia of this genus is described and illustrated for the first time and is found to lack any genital hook. Female Ctenoneura is reported as apterous. Species abundance is estimated. Two species groups are suggested and the taxonomic status of the genus is discussed. A map and a key to males of Chinese Ctenoneura spp. and an updated checklist of the Ctenoneura are provided. Habitat photographs of Ctenoneura are shown for the first time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.