Most KSMHs are locally generated in the magnetosheath, rather than advected with the solar wind. q KSMHs are more likely to be generated downstream of the quasi-parallel shock, indicating the importance of turbulence in their generation. q The scale-size of KSMHs is smaller near the subsolar magnetosheath than along the flanks, indicating they may be affected by the magnetosheath pressure environment.
<p>Kinetic- scale magnetic hole (KSMH) is a kind of structure whose spatial scale is only or smaller than the ion gyroradius and the magnetic field intensity shows rapid decrease in the observation. Recently, with the improvement of high spatio-temporal resolution measurements, previous studies have revealed some physical processes at the small scale, like electron energization, energy dissipation, wave-particle interaction and the turbulence. However, these studies on KSMHs have not touched on the generation and evolution of these structures due to limitations in the analysis methods used. In this work, using a series of KSMHs events observed by MMS and a new method to analyze the size of the hole, we are studying the relationship between the size of KSMHs and their spatial position in the magnetosheath statistically, and try to find the headstream of this type of structures and reveal their evolution process when they propagate with plasma flow.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.