Proteolysis
targeting chimera (PROTAC) recruits an E3 ligase to
a target protein to induce its ubiquitination and subsequent degradation.
We reported success in the development of two PROTACs (C3 and C5) that potently and selectively induce the degradation
of Mcl-1 and Bcl-2 (DC50 = 0.7 and 3.0 μM), respectively,
by introducing the E3 ligase cereblon-binding ligand pomalidomide
to Mcl-1/Bcl-2 dual inhibitors S1-6 and Nap-1 with micromolar-range affinity. C3-induced Mcl-1 ubiquitination
translated into much more lethality in Mcl-1-dependent H23 cells than
the most potent Mcl-1 occupancy-based inhibitor A-1210477 with nanomolar-range affinity. Moreover, structure–activity
relationship analysis and molecular dynamic simulations discovered
the structural basis for turning nonselective or promiscuous Bcl-2
family ligands into selective PROTACs. C3 and C5 exhibited reversible depletion in living cells, which provides a
new potent toolkit for gain-of-function studies to probe the dynamic
roles of Bcl-2 and Mcl-1 in apoptosis networks.
Tongxinluo (TXL) is a compound prescription formulated according to the meridian theory of traditional Chinese medicine. It may play an important role in cardiovascular protection by improving endothelial cell function. The aim of present study was to investigate whether endothelial protection with TXL is related to its regulation of tight junction protein expression. Human cardiac microvascular endothelial cells (HCMECs) were cultured and treated with 10(-7) mol l(-1) angiotensin II (Ang II) and the different doses of TXL; the expression of tight junction proteins occludin, claudin, VE-cadherin and beta-catenin was determined by Western blotting and real-time PCR. Gain-of-function and loss-of-function of Krüppel-like factor 5 (KLF5) were carried out in HCMEC transfected with either KLF5 adenovirus pAd-KLF5 or siRNA specific for KLF5. Angiotensinogen transgenic mice were treated with TXL by oral administration of TXL of 0.75 g kg(-1) day(-1) , and immunohistochemical staining was performed with antioccludin, anticlaudin, anti-VE-cadherin, antibeta-catenin and anti-KLF5 antibodies. Ang II treatment significantly reduced the expression of tight junction proteins occludin, claudin, VE-cadherin and beta-catenin in cultured HCMECs. TXL pretreatment could abrogate the down-regulation of these tight junction proteins induced by Ang II. Ang II treatment also decreased KLF5 expression at the mRNA and protein levels; TXL pretreatment markedly reversed the inhibitory effect of Ang II on KLF5 expression. Gain-of-function and loss-of-function of KLF5 showed that KLF5 mediated the expression of tight junction proteins in HCMECs. TXL-enhanced expression of the tight junction proteins was mediated by KLF5. In angiotensinogen transgenic mice, TXL also increased the tight junction protein levels by inducing KLF5 expression. Chinese medicine TXL increases tight junction protein levels by inducing KLF5 expression in microvascular endothelial cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.