Fear can have strong ecosystem effects by giving predators a role disproportionate to their actual kill rates. In bees, fear is shown through foragers avoiding dangerous food sites, thereby reducing the fitness of pollinated plants. However, it remains unclear how fear affects pollinators in a complex natural scenario involving multiple predator species and different patch qualities. We studied hornets, Vespa velutina (smaller) and V. tropica (bigger) preying upon the Asian honey bee, Apis cerana in China. Hornets hunted bees on flowers and were attacked by bee colonies. Bees treated the bigger hornet species (which is 4 fold more massive) as more dangerous. It received 4.5 fold more attackers than the smaller hornet species. We tested bee responses to a three-feeder array with different hornet species and varying resource qualities. When all feeders offered 30% sucrose solution (w/w), colony foraging allocation, individual visits, and individual patch residence times were reduced according to the degree of danger. Predator presence reduced foraging visits by 55–79% and residence times by 17–33%. When feeders offered different reward levels (15%, 30%, or 45% sucrose), colony and individual foraging favored higher sugar concentrations. However, when balancing food quality against multiple threats (sweeter food corresponding to higher danger), colonies exhibited greater fear than individuals. Colonies decreased foraging at low and high danger patches. Individuals exhibited less fear and only decreased visits to the high danger patch. Contrasting individual with emergent colony-level effects of fear can thus illuminate how predators shape pollination by social bees.
An 'I see you' (ISY) prey-predator signal can co-evolve when such a signal benefits both prey and predator. The prey benefits if, by producing the signal, the predator is likely to break off an attack. The predator benefits if it is informed by the signal that the prey is aware of its presence and can break off what is likely to be an unsuccessful and potentially costly hunt. Because the signal and response co-evolve in two species, the behaviour underlying an ISY signal is expected to have a strong genetic component and cannot be entirely learned. An example of an ISY signal is the 'shimmering' behaviour performed by Asian hive bee workers in the presence of their predator Vespa velutina. To test the prediction that bee-hornet signalling is heritable, we let honey bee workers of two species emerge in an incubator so that they had never been exposed to V. velutina. In Apis cerana, the shimmering response developed 48 h post-emergence, was strong after 72 h and increased further over 2 weeks. In contrast, A. mellifera, which has evolved in the absence of Asian hornets, did not produce the shimmering signal. In control tests, A. cerana workers exposed to a non-threatening butterfly did not respond with the shimmering signal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.