The importance of microRNA (miRNA) dysregulation for the development and progression of diseases and the discovery of stable miRNAs in peripheral blood have made these short-sequence nucleic acids next-generation biomarkers. Here we present a fully homogeneous multiplexed miRNA FRET assay that combines careful biophotonic design with various RNA hybridization and ligation steps. The single-step, single-temperature, and amplification-free assay provides a unique combination of performance parameters compared to state-of-the-art miRNA detection technologies. Precise multiplexed quantification of miRNA-20a, -20b, and -21 at concentrations between 0.05 and 0.5 nM in a single 150 μL sample and detection limits between 0.2 and 0.9 nM in 7.5 μL serum samples demonstrate the feasibility of both high-throughput and point-of-care clinical diagnostics.
A myriad of quantum dot (QD) biosensor examples have emerged from the literature over the past decade, but despite their photophysical advantages, QDs have yet to find acceptance as standard fluorescent reagents in clinical diagnostics. Lack of reproducible, stable, and robust immunoassays using easily prepared QD-antibody conjugates has historically plagued this field, preventing researchers from advancing the deeper issues concerning assay sensitivity and clinically relevant detection limits on low-volume serum samples. Here we demonstrate a ratiometric multiplexable FRET immunoassay using Tb donors and QD acceptors, which overcomes all the aforementioned limitations toward application in clinical diagnostics. We demonstrate the determination of prostate specific antigen (PSA) in 50 μL serum samples with subnanomolar (1.6 ng/mL) detection limits using time-gated detection and two different QD colors. This concentration is well below the clinical cutoff value of PSA, which demonstrates the possibility of direct integration into real-life in vitro diagnostics. The application of IgG, F(ab')2, and F(ab) antibodies makes our homogeneous immunoassay highly flexible and ready-to-use for the sensitive and specific homogeneous detection of many different biomarkers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.