Palaeoshorelines, highstand lacustrine sediments and lakeshore terraces are preserved around saline lakes in the arid Qaidam Basin. Previous research indicates that the chronology of a mega‐paleolake in the Qaidam Basin during the late Pleisotocene is controversial. Here we report quartz optically stimulated luminescence (OSL) age estimates of highstand lacustrine sediments, shoreline features and geomorphic exposures that contribute to a revision of the lake level history of Gahai and Toson lakes in the north‐eastern Qaidam Basin, on the northeastern Qinghai–Tibetan Plateau (QTP) margin. The results imply that: (i) high lake levels at Gahai and Toson lakes based on quartz OSL dating occurred at 85–72, 63–55, 31, 5.4 and 0.9–0.7 ka, probably corresponding to periods of warm and wet climate; (ii) periods of high lake levels are almost synchronous with other lakes on the QTP (e.g. Qinghai and Namco lakes), with the highest late Pleistocene levels occurring during Marine Oxygen Isotope Stage 5; and (iii) highstand phases on the QTP are out of phase with those of low‐latitude lakes in the southern hemisphere, possibly driven by solar insolation variability in the low‐latitude region. Copyright © 2012 John Wiley & Sons, Ltd.
In order to reveal the pollution characteristics and sources of heavy metals in surface soil of the region around the Qinghai Lake in Tibet Plateau, improve the prevention awareness and measures of local residents and urge the local government to implement necessary prevention and control measures, nine heavy metals (As, Cd, Co, Cr, Cu, Mn, Ni, Pb and Zn) in the surface soil samples of the region around the Qinghai Lake have been collected and analyzed. The methods such as statistic method, geo-accumulation index method, Nemerow index method, potential ecological risk index method, human health risk evaluation method and positive matrix factor analysis model (PMF) have been used to evaluate pollution characteristics and potential risks and analyze the sources of heavy metals. The results are shown below. First, the average contents of heavy metals (As, Cd, Co, Cr, Cu, Mn, Ni, Pb and Zn) in soil are 11.73 ± 3.78, 0.62 ± 1.40, 12.38 ± 3.68, 41.35 ± 13.01, 19.33 ± 8.92, 546.96 ± 159.28, 21.18 ± 7.04, 21.86 ± 6.61 and 63.51 ± 19.71 mg·kg−1, respectively. Compared with the background values of the soil environment in Qinghai Province, it can be seen that there is an accumulation of these heavy metals to varying degrees, which is the most serious in Cd, Co and Pb. Second, the analysis of the geo-accumulation index and Nemerow index indicates that the heavy metals in the surface soil of the region around the Qinghai Lake have reached the level of heavy pollution, mainly polluted by Cd, and the accumulation of heavy metal pollution in the north, south, southwest and southeast of the study area is more serious. Third, the results of potential ecological risk evaluation show that the study area as a whole is classified as an area with high ecological risk, and Cd contributes the most to the overall risk. In fact, the heavy metals in the soil of the study area produce no noncarcinogenic and carcinogenic health risks to human health, and children and adults may be exposed to these risks by the mouth. Finally, the PMF results reveal that the sources of heavy metals in the study area include the sources of agricultural production, the nature, coal burning and transportation, with a contribution rate of 43.10%, 25.34%, 19.67% and 11.89%, respectively.
As the sand mass flux increases from zero at the leading edge of a saltating surface to the equilibrium mass flux at the critical fetch length, the wind flow is modified and then the relative contribution of aerodynamic and bombardment entrainment is changed. In the end the velocity, trajectory and mass flux profile will vary simultaneously. But how the transportation of different sand size groups varies with fetch distance is still unclear. Wind tunnel experiments were conducted to investigate the fetch effect on mass flux and its distribution with height of the total sand and each size group in transportation. The mass flux was measured at six fetch length locations (0.5, 1.2, 1.9, 2.6, 3.4 and 4.1 m) and at three free-stream wind velocities (8.8, 12.2 and 14.5 m/s). The results reveal that the total mass flux and the mass flux of each size group with height can be expressed by q=aexp(-bh), where q is the sand mass flux at height h, and a and b are regression coefficients. The coefficient b represents the relative decay rate. Both the relative decay rates of total mass flux and each size group are independent of fetch length after a quick decay over a short fetch. This is much shorter than that of mass flux. The equilibrium of the relative decay rate cannot be regarded as an equilibrium mass flux profile for aeolian sand transport. The mass fluxes of 176.0, 209.3 and 148.0 μm size groups increase more quickly than that of other size groups, which indicates strong size-selection of grains exists along the fetch length. The maximal size group in mass flux (176.0 μm) is smaller than the maximal size group of the bed grains (209.3 μm). The relative contribution of each size group to the total mass flux is not monotonically decreasing with grain size due to the lift-off of some small grains being reduced due to the protection by large grains. The results indicate that there are complex interactions among different size groups in the developmental process of aeolian sand transport and more attention should be focused on the fetch effect because it has different influences on the total mass flux, the mass flux profile and its relative decay rate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.