Khz is a compound derived from the fusion of Ganoderma lucidum and Polyporus umbellatus mycelia that inhibits the growth of cancer cells. The results of the present study show that Khz induced apoptosis preferentially in transformed cells and had only minimal effects on non-transformed cells. Furthermore, Khz induced apoptosis by increasing the intracellular Ca2+ concentration ([Ca2+]i) and activating JNK to generate reactive oxygen species (ROS) via NADPH oxidase and the mitochondria. Khz-induced apoptosis was caspase-dependent and occurred via a mitochondrial pathway. ROS generation by NADPH oxidase was critical for Khz-induced apoptosis, and although mitochondrial ROS production was also required, it appeared to occur secondary to ROS generation by NADPH oxidase. Activation of NADPH oxidase was demonstrated by the translocation of regulatory subunits p47phox and p67phox to the cell membrane and was necessary for ROS generation by Khz. Khz triggered a rapid and sustained increase in [Ca2+]i, which activated JNK. JNK plays a key role in the activation of NADPH oxidase because inhibition of its expression or activity abrogated membrane translocation of the p47phox and p67phox subunits and ROS generation. In summary, these data indicate that Khz preferentially induces apoptosis in cancer cells, and the signaling mechanisms involve an increase in [Ca2+]i, JNK activation, and ROS generation via NADPH oxidase and mitochondria.
Abstract. Khz (fusion of Ganoderma lucidum and Polyporus umbellatus), isolated from the mycelia of G. lucidum and P. umbellatus, exerts anti-proliferative effects against malignant cells; however, its activity against human breast cancer cells remains to be elucidated. In the present study, cell proliferation was assessed using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, and poptosis was examined using annexin V-propidium iodide staining and flow cytometry. The activation of caspases 7, 8 and 9 were detected in the Khz-treated cells using western blotting. The results demonstrated that Khz increased the intracellular calcium concentration and induced the production of reactive oxygen species in MCF-7 breast cancer cells, as determined using flow cytometry. The results also demonstrated that Khz inhibited cell proliferation and induced apoptosis in the MCF-7 cells. In addition, the mechanism by which Khz induces apoptosis in cancer cells was investigated. Khz induced apoptosis preferentially in transformed cells, with a minimal effect on non-transformed cells, suggesting its potential as an anticancer therapeutic agent. Oxidative stress is associated with apoptotic and non-apoptotic cell death, although pro-oxidative conditions are not a pre-requisite for apoptosis. Assessment of the activation status of caspases 7, 8 and 9 revealed that the levels of cleaved caspases were significantly increased in the cells treated with Khz. It is widely accepted that calcium signaling is important in apoptosis, and the present study observed an increase in [Ca 2+ ] i in response to Khz treatment. The anti-proliferative and pro-apoptotic effects of Khz suggest that this extract may be developed as a potential anticancer agent.
BackgroundKhz-cp is a crude polysaccharide extract that is obtained after nuclear fusion in Ganoderma lucidum and Polyporus umbellatus mycelia (Khz). It inhibits the growth of cancer cells.MethodsKhz-cp was extracted by solvent extraction. The anti-proliferative activity of Khz-cp was confirmed by using Annexin-V/PI-flow cytometry analysis. Intracellular calcium increase and measurement of intracellular reactive oxygen species (ROS) were performed by using flow cytometry and inverted microscope. SNU-1 cells were treated with p38, Bcl-2 and Nox family siRNA. siRNA transfected cells was employed to investigate the expression of apoptotic, growth and survival genes in SNU-1 cells. Western blot analysis was performed to confirm the expression of the genes.ResultsIn the present study, Khz-cp induced apoptosis preferentially in transformed cells and had only minimal effects on non-transformed cells. Furthermore, Khz-cp was found to induce apoptosis by increasing the intracellular Ca2+ concentration ([Ca2+]i) and activating P38 to generate reactive oxygen species (ROS) via NADPH oxidase and the mitochondria. Khz-cp-induced apoptosis was caspase dependent and occurred via a mitochondrial pathway. ROS generation by NADPH oxidase was critical for Khz-cp-induced apoptosis, and although mitochondrial ROS production was also required, it appeared to occur secondary to ROS generation by NADPH oxidase. Activation of NADPH oxidase was shown by the translocation of the regulatory subunits p47phox and p67phox to the cell membrane and was necessary for ROS generation by Khz-cp. Khz-cp triggered a rapid and sustained increase in [Ca2+]i that activated P38. P38 was considered to play a key role in the activation of NADPH oxidase because inhibition of its expression or activity abrogated membrane translocation of the p47phox and p67phox subunits and ROS generation.ConclusionsIn summary, these data indicate that Khz-cp preferentially induces apoptosis in cancer cells and that the signaling mechanisms involve an increase in [Ca2+]i, P38 activation, and ROS generation via NADPH oxidase and mitochondria.
Khz (a fusion mycelium of Ganoderma lucidum and Polyporus umbellatus mycelia) is isolated from ganoderic acid and P. umbellatus and it exerts antiproliferative effects against malignant cells. However, no previous study has reported the inhibitory effects of Khz on the growth of human colon cancer cells. In the present study, we found that Khz suppressed cell division and induced apoptosis in HCT116 cells. Khz cytotoxicity was measured using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Khz reduced cell viability and mitochondrial membrane potential levels and it also induced disruption of the mitochondrial membrane potential and increased calcium concentration and reactive oxygen species generation. Khz increased caspase 3, PARP, caspase 7, and caspase 9 levels, but reduced Bcl-2 protein levels. Flow cytometry showed that the percentage of HCT116 cells in the sub-G1 phase of the cell cycle increased in response to Khz treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.