During human placentation, extravillous cytotrophoblast cells emerge from chorionic villi contacting the decidua to invade the uterine wall. When isolated from first-trimester placentae, cytotrophoblast cells undergo step-wise differentiation in vitro that recapitulates the phenotypic heterogeneity observed in vivo. We examined a cell line, HTR-8/SVneo, that has been established from human first-trimester cytotrophoblast to determine whether these cells possess some of the unique cytotrophoblast characteristics that have been described previously. Exposure during serum-free culture to hypoxic conditions (2% oxygen concentration) increased HTR-8/SVneo cell proliferation and reduced invasion of a three-dimensional basement membrane (Matrigel). During culture on surfaces coated with individual extracellular matrix proteins, HTR-8/SVneo cells expressed cytokeratin but not the trophoblast-specific major histocompatibility protein, HLA-G. However, HLA-G expression was induced in HTR-8/SVneo cells that contacted Matrigel. Expression of the alpha5 integrin subunit was relatively unaffected by matrix composition, whereas alpha1 was up-regulated and alpha6 was down-regulated after transferring cells to Matrigel. Hypoxia increased alpha6 and decreased both alpha1 and HLA-G expression on Matrigel. HTR-8/SVneo cells retain several important characteristics associated with primary cultures of first-trimester human cytotrophoblast cells, including their altered behavior in response to a changing maternal environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.