This outbreak was unique, because it affected a large, urban, predominantly young, middle-class, otherwise healthy population and resulted in an unprecedented public health emergency. Rapid diagnosis and treatment avoided higher lethality. Food-borne transmission of T. cruzi may occur more often than is currently recognized.
Orally transmitted Chagas disease has become a matter of concern due to outbreaks
reported in four Latin American countries. Although several mechanisms for orally
transmitted Chagas disease transmission have been proposed, food and beverages
contaminated with whole infected triatomines or their faeces, which contain
metacyclic trypomastigotes of Trypanosoma cruzi, seems to be the
primary vehicle. In 2007, the first recognised outbreak of orally transmitted Chagas
disease occurred in Venezuela and largest recorded outbreak at that time. Since then,
10 outbreaks (four in Caracas) with 249 cases (73.5% children) and 4% mortality have
occurred. The absence of contact with the vector and of traditional cutaneous and
Romana’s signs, together with a florid spectrum of clinical manifestations during the
acute phase, confuse the diagnosis of orally transmitted Chagas disease with other
infectious diseases. The simultaneous detection of IgG and IgM by ELISA and the
search for parasites in all individuals at risk have been valuable diagnostic tools
for detecting acute cases. Follow-up studies regarding the microepidemics primarily
affecting children has resulted in 70% infection persistence six years after
anti-parasitic treatment. Panstrongylus geniculatus has been the
incriminating vector in most cases. As a food-borne disease, this entity requires
epidemiological, clinical, diagnostic and therapeutic approaches that differ from
those approaches used for traditional direct or cutaneous vector transmission.
Chagas disease is an endemic zoonosis native to the Americas and is caused by the kinetoplastid protozoan parasite Trypanosoma cruzi. The parasite is also highly genetically diverse, with six discrete typing units (DTUs) reported TcI – TcVI. These DTUs broadly correlate with several epidemiogical, ecological and pathological features of Chagas disease. In this manuscript we report the most comprehensive evaluation to date of the genetic diversity of T. cruzi in Venezuela. The dataset includes 778 samples collected and genotyped over the last twelve years from multiple hosts and vectors, including nine wild and domestic mammalian host species, and seven species of triatomine bug, as well as from human sources. Most isolates (732) can be assigned to the TcI clade (94.1%); 24 to the TcIV group (3.1%) and 22 to TcIII (2.8%). Importantly, among the 95 isolates genotyped from human disease cases, 79% belonged to TcI - a DTU common in the Americas, however, 21% belonged to TcIV- a little known genotype previously thought to be rare in humans. Furthermore, were able to assign multiple oral Chagas diseases cases to TcI in the area around the capital, Caracas. We discuss our findings in the context of T. cruzi DTU distributions elsewhere in the Americas, and evaluate the impact they have on the future of Chagas disease control in Venezuela.
A Trypanosoma cruzi Loopamp kit was recently developed as a ready-to-use diagnostic method requiring minimal laboratory facilities. We evaluated its diagnostic accuracy for detection of acute Chagas disease (CD) in different epidemiological and clinical scenarios. In this retrospective study, a convenience series of clinical samples (venous blood treated with EDTA or different stabilizer agents, heel-prick blood in filter paper or cerebrospinal fluid samples (CSF)) from 30 infants born to seropositive mothers (13 with congenital CD and 17 noninfected), four recipients of organs from CD donors, six orally-infected cases after consumption of contaminated guava juice and six CD patients coinfected with HIV at risk of CD reactivation (N = 46 patients, 46 blood samples and 1 CSF sample) were tested by T. cruzi Loopamp kit (Tc LAMP) and standardized quantitative real-time PCR (qPCR). T. cruzi Loopamp accuracy was estimated using the case definition in the different groups as a reference. Cohen's kappa coefficient (κ) was applied to measure the agreement between Tc LAMP (index test) and qPCR (reference test). Sensitivity and specificity of T. cruzi Loopamp kit in blood samples from the pooled clinical groups was 93% (95% CI: 77-99) and 100% (95% CI: 80-100) respectively. The agreement between Tc LAMP and qPCR was almost perfect (κ = 0.92, 95% CI: 0.62-1.00). The T. cruzi Loopamp kit was sensitive and specific for detection of T. cruzi infection. It was carried out from DNA extracted from peripheral blood samples (via frozen EDTA blood, guanidine hydrochloride-EDTA blood, DNAgard blood and dried blood spots), as well as in CSF specimens
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.