Evaluation of NiTi alloy corrosion behavior in conditions that exist in the oral cavity still remains a great characterization challenge. Such characterization is commonly simplified by avoiding the use of non-accelerated corrosion tests. Accordingly, difficulties in the characterization of material changes on a nano level are avoided, and results do not sufficiently resemble the real situation. Therefore, the motivation of this work was to perform a non-accelerated corrosion test to characterize the nano-topographic changes, and to evaluate the obtained results by statistical methods. In this study, we examined the behavior of NiTi alloy (50% Ni, 50% Ti) archwires exposed for 21 days to different corrosive mediums: artificial saliva, Eludril®, Aquafresh® and Listerine®. The corrosion was characterized by means of changes in surface topography. This was conducted by contact mode atomic force microscopy on all samples at five locations of 10 µm × 10 µm areas before and after the corrosion tests. Image analysis software was used for the analysis of topographic images and the calculation of surface roughness parameters Sa and S10z. The changes to the roughness parameters were statistically analyzed by ANOVA. Sa and S10z parameters displayed changes with a trend for all treatments. However, the confidence interval for all cases was overlapped. Statistically analyzed data revealed that all samples exposed to mouthwashes displayed significant changes in parameter S10z, while only samples exposed to Aquafresh® and Eludril® displayed significant changes in parameter Sa. On the other side, samples exposed to artificial saliva did not display significant changes in any parameter. As such, it is implied that mouthwashes have a significantly higher effect on surface topography. Differences in the confidence interval of the Sa parameter indicate that changes in roughness parameters caused by corrosion do not depend on the initial surface roughness. In this study, statistical analysis methods have been proven as a useful tool in the characterization of nano-topographic changes caused by corrosion in real conditions.
Nitinol (NiTi) alloy is a widely used material for the production of orthodontic archwires. Its corrosion behavior in conditions that exist in the oral cavity still remains a great characterization challenge. The motivation behind this work is to reveal the influence of commercially available mouthwashes on NiTi orthodontic archwires by performing non-electrochemical corrosion tests and quantifying the changes in the nanotopography of commercially available NiTi orthodontic wires. In this study, we examined the behavior of NiTi alloy archwires exposed for 21.5 days to different corrosive media: artificial saliva, Eludril®, Aquafresh®, and Listerine®. The corrosion was characterized by contact mode atomic force microscopy (AFM) before and after the corrosion tests. A novel analysis methodology was developed to obtain insight into locations of material gain or material loss based on standard surface roughness parameters Sa, Sdr, Ssk, and S10z. The developed methodology revealed that fluoride-containing mouthwashes (Aquafresh® and Listerine®) dominantly cause material loss, while chloride-containing mouthwash (Eludril®) can cause both material loss and material gain. The sample exposed to artificial saliva did not display significant changes in any parameter.
U ovom radu prikazani su rezultati ispitivanja topografije Ni-Ti (nitinol) ortodontske žice pre i posle korozije u različitim medijumima.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.