In this paper, we consider the problem of acoustic source localization in a wireless sensor network based on different measured signal quantities, such as the received signal strength (RSS), the angle of arrival (AOA) and the time of arrival (TOA). For each of these quantities, an appropriate weighted least squares criterion function is developed to be used for sound source localization. The weights of each criterion function take into account the decrease in the signal-to-noise ratio (SNR) with distance from the source. In addition, RSS localization algorithm proposed in this paper provides improvement of the localization accuracy for low SNR. Finally, separate criterion functions for RSS, TOA and AOA are used together to obtain minimal localization error and maximal reliability of the acoustic source localization. Simulation analysis confirms improved performance of the proposed localization algorithm.Keywords Angle of arrival · Received signal strength · Sensor network · Time delay of arrival · Time of arrival Z.M. Saric ( ) RT-SP Computer Based Systems, Novi Sad, Serbia
Verruconis gallopava is a dematiaceous mould usually causing saprophytic infection in immunosuppressed host. Only a few cases have been published even in immunocompromised states. We present a rare case of pulmonary involvement in an immunocompetent patient with recurrent disease. The mid-aged woman had no evidence of any disease causing impaired immune response. Recurrent disease shows pulmonary infiltrates and symptoms of allergic bronchopulmonary mycosis. We describe an emerging pathogen that has been found in an immunocompetent host. Eradication was not possible despite the use of several different antifungal drugs. Further recurrence of infection in the described patient is probable.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.