In this work, we developed molecular tools used in standard laboratory yeast strains, such as the cre-loxP system, so that they can be used with natural and industrial prototrophic yeast species. We constructed a new generation of dominant cassettes, with mutated loxP sites (lox LE and lox 2272) and selectable drug markers, to create heterothallic strains and auxotrophic mutants without incurring in the risk of generating chromosomal rearrangements. We have shown that our newly developed loxLE-hphNT1-loxRE and lox2272-natNT2-lox2272 gene-disruption cassettes can be present in the yeast genome together with the widely used loxP-marker gene-loxP cassettes without any recombination between the lox sequences. Moreover, we also developed a new phleomycin-resistant Cre-expressing vector (to excise multiple markers simultaneously) and two new standard lox P deletion cassettes containing hygromicin B and cloNAT as selecatable markers. To validate these cassettes, we created heterothallic auxotrophic S. cerevisiae strains, without the risk of incurring gross chromosomal rearrangements, and we showed an example of a fitness study of intraspecific hybrids deriving from parents with different adaptations to carbonlimited resources.
The nonrandom gene organization in eukaryotes plays a significant role in genome evolution and function. Chromosomal structural changes impact meiotic fitness and, in several organisms, are associated with speciation and rapid adaptation to different environments. Small sized chromosomal inversions, encompassing few genes, are pervasive in Saccharomyces “sensu stricto” species, while larger inversions are less common in yeasts compared with higher eukaryotes. To explore the effect of gene order on phenotype, reproductive isolation, and gene expression, we engineered 16 Saccharomyces cerevisiae strains carrying all possible paracentric and pericentric inversions between Ty1 elements, a natural substrate for rearrangements. We found that 4 inversions were lethal, while the other 12 did not show any fitness advantage or disadvantage in rich and minimal media. At meiosis, only a weak negative correlation with fitness was seen with the size of the inverted region. However, significantly lower fertility was seen in heterozygote invertant strains carrying recombination hotspots within the breakpoints. Altered transcription was observed throughout the genome rather than being overrepresented within the inversions. In spite of the large difference in gene expression in the inverted strains, mitotic fitness was not impaired in the majority of the 94 conditions tested, indicating that the robustness of the expression network buffers the deleterious effects of structural changes in several environments. Overall, our results support the notion that transcriptional changes may compensate for Ty-mediated rearrangements resulting in the maintenance of a constant phenotype, and suggest that large inversions in yeast are unlikely to be a selectable trait during vegetative growth.
Mitochondrial Prx1 functions as a redox signaling molecule that oxidizes Trx3 and promotes apoptosis. This would mean that under conditions where Prx1 cannot detoxify mitochondrial ROS, it induces cell death to remove the affected cells.
Damage to the lung epithelium is a unifying feature of disease caused by the saprophytic fungus Aspergillus fumigatus. However, the mechanistic basis and the regulatory control of such damage is poorly characterized. Previous studies have identified A. fumigatus mediated pathogenesis as occurring at early (≤ 16 hours) or late (>16 hours) phases of the fungal interaction with epithelial cells, and respectively involve direct contact with the host cell or the action of soluble factors produced by mature fungal hyphae. Both early and late phases of epithelial damage have been shown to be subject to genetic regulation by the pH-responsive transcription factor PacC. This study sought to determine whether other transcriptional regulators play a role in modulating epithelial damage. In particular, whether the early and late phases of epithelial damage are governed by same or distinct regulators. Furthermore, whether processes such as spore uptake and hyphal adhesion, that have previously been documented to promote epithelial damage, are governed by the same cohorts of epithelial regulators. Using 479 strains from the recently constructed library of A. fumigatus transcription factor null mutants, two high-throughput screens assessing epithelial cell detachment and epithelial cell lysis were conducted. A total of 17 transcription factor mutants were found to exhibit reproducible deficits in epithelial damage causation. Of these, 10 mutants were defective in causing early phase damage via epithelial detachment and 8 mutants were defective in causing late phase damage via epithelial lysis. Remarkably only one transcription factor, PacC, was required for causation of both phases of epithelial damage. The 17 mutants exhibited varied and often unique phenotypic profiles with respect to fitness, epithelial adhesion, cell wall defects, and rates of spore uptake by epithelial cells. Strikingly, 9 out of 10 mutants deficient in causing early phase damage also exhibited reduced rates of hyphal extension, and culture supernatants of 7 out of 8 mutants deficient in late phase damage were significantly less cytotoxic. Our study delivers the first high-level overview of A. fumigatus regulatory genes governing lung epithelial damage, suggesting highly coordinated genetic orchestration of host-damaging activities that govern epithelial damage in both space and time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.