SignificanceHoney bee pollination is required to sustain the biodiversity of wild flora and for agricultural production; however, honey bee populations in Europe and North America are declining due to virus infections. Sacbrood virus (SBV) infection is lethal to honey bee larvae and decreases the fitness of honey bee colonies. Here we present the structure of the SBV particle and show that it contains 60 copies of a minor capsid protein attached to its surface. No similar minor capsid proteins have been previously observed in any of the related viruses. We also present a structural analysis of the genome release of SBV. The possibility of blocking virus genome delivery may provide a tool to prevent the spread of this honey bee pathogen.
Glycosylation of polyphenols may increase their aqueous solubility, stability, bioavailability and pharmacological activity. Herein, we used a mutant of sucrose phosphorylase from Thermoanaerobacterium thermosaccharolyticum engineered to accept large polyphenols (variant TtSPP_R134A) to produce phloretin glucosides. The reaction was performed using 10% (v/v) acetone as cosolvent. The selective formation of a monoglucoside or a diglucoside (53% and 73% maximum conversion percentage, respectively) can be kinetically controlled. MS and 2D‐NMR determined that the monoglucoside was phloretin 4’‐O‐α‐D‐glucopyranoside and the diglucoside phloretin‐4’‐O‐[α‐D‐glucopyranosyl‐(1→3)‐O‐α‐D‐glucopyranoside], a novel compound. The molecular features that determine the specificity of this enzyme for 4’‐OH phenolic group were analysed by induced‐fit docking analysis of each putative derivative, using the crystal structure of TtSPP and changing the mutated residue. The mono‐ and diglucoside were, respectively, 71‐ and 1200‐fold more soluble in water than phloretin at room temperature. The α‐glucosylation decreased the antioxidant capacity of phloretin, measured by DPPH and ABTS assays; however, this loss was moderate and the activity could be recovered upon deglycosylation in vivo. Since phloretin attracts a great interest in dermocosmetic applications, we analyzed the percutaneous absorption of glucosides and the aglycon employing a pig skin model. Although the three compounds were detected in all skin layers (except the fluid receptor), the diglucoside was present mainly on superficial layers.
Cellodextrins are non-digestible oligosaccharides that have attracted interest from the food industry as potential prebiotics. They are typically produced through the partial hydrolysis of cellulose, resulting in a complex mixture of oligosaccharides with a varying degree of polymerisation (DP). Here, we explore the defined synthesis of cellotriose as product since this oligosaccharide is believed to be the most potent prebiotic in the mixture. To that end, the cellobiose phosphorylase (CBP) from Cellulomonas uda and the cellodextrin phosphorylase (CDP) from Clostridium cellulosi were evaluated as biocatalysts, starting from cellobiose and α-D-glucose 1-phosphate as acceptor and donor substrate, respectively. The CDP enzyme was shown to rapidly elongate the chains towards higher DPs, even after extensive mutagenesis. In contrast, an optimised variant of CBP was found to convert cellobiose to cellotriose with a molar yield of 73%. The share of cellotriose within the final soluble cellodextrin mixture (DP2-5) was 82%, resulting in a cellotriose product with the highest purity reported to date. Interestingly, the reaction could even be initiated from glucose as acceptor substrate, which should further decrease the production costs. Key points • Cellobiose phosphorylase is engineered for the production of cellotriose. • Cellotriose is synthesised with the highest purity and yield to date. • Both cellobiose and glucose can be used as acceptor for cellotriose production.
α-Glucan phosphorylases (α-GPs) catalyze the reversible phosphorolysis of α-1,4-linked polysaccharides such as glycogen, starch, and maltodextrins, therefore playing a central role in the usage of storage polysaccharides. The discovery of these enzymes and their role in the course of catalytic conversion of glycogen was rewarded with the Nobel Prize in Physiology or Medicine in 1947. Nowadays, however, thermostable representatives attract special attention due to their vast potential in the enzymatic production of diverse carbohydrates and derivatives such as (functional) oligo- and (non-natural) polysaccharides, artificial starch, glycosides, and nucleotide sugars. One of the most recently explored utilizations of α-GPs is their role in the multi-enzymatic process of energy production stored in carbohydrate biobatteries. Regardless of their use, thermostable α-GPs offer significant advantages and facilitated bioprocess design due to their high operational temperatures. Here, we present an overview and comparison of up-to-date characterized thermostable α-GPs with a special focus on their reported biotechnological applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.