The inhibitory effects of 1,3-diacylglycerol (DAG) on diet-induced lipid accumulation in liver and abdominal adipose tissue of rats were investigated in the present study. Male Sprague-Dawley rats were given free access to diets containing 7 wt% TAG (low TAG), 20 wt% TAG (high TAG), or 20 wt% DAG (high DAG), respectively, for 8 wk. The body weight of rats in the 20% high-TAG group increased significantly, and the weights of their abdominal adipose tissue and liver also showed a significant increase compared with rats in the low-TAG group. However, the high-DAG diet resulted in both a significant reduction in body weight gain (with a decrease of 70.5%) and an increase in the ratio of abdominal fat to body weight (by 127%) compared with the high-TAG diet. As well, the liver TAG and serum TAG levels of the high-DAG group were significantly lower than those of the high-TAG group. These effects were associated with up-regulation of acyl-CoA carnitine acyltransferase (ACAT) and down-regulation of acyl-CoA DAG acyltransferase (DGAT) in the liver. However, no significant difference was observed in the activities of alanine aminotransferase and aspartate aminotransferase among the groups (P > 0.05). The present results indicate that dietary DAG reduced fat accumulation in viscera and body, and these effects may be involved with up-regulation of ACAT and down-regulation of DGAT in the liver.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.