A precise estimate of the evapotranspiration (ET) partitioning is fundamental for determining the crop water needs and optimizing irrigation management. The plant transpiration (T) is generally considered to be the most desirable component, while reducing the soil evaporation (E) could be one of the most important water-saving actions in semi-arid agricultural regions. Given the lack of reference method to estimate the E/T partitioning of wheat crop, this study inter-compares four different methods based on eddy covariance, sap flow and lysimetry measurements and FAO modeling. The objectives are: i) to quantify the systematic and random uncertainty in E and T observations, ii) to evaluate the partitioning ratio (T/ET) at the daily/field scale and iii) to assess the performance of the FAO model over two drip irrigated wheat fields. Results indicate that despite the small surface sensed by minilysimeters, the partitioning ratio is evaluated more precisely (19% relative error) with lysimetry than with the other systems (any combination of eddy covariance, lysimetry and sap flow measurements). Moreover, stem-scale T measurements from sap flow sensors are subject to representativeness issues at the field scale, and to systematic errors during water-stress and senescence periods. The lysimeter-derived partitioning ratio increases from about 0.50 to 0.85 during the growth stage and rapidly drops towards 0 during senescence. Its dynamics is found to be significantly correlated (R>0.7) with the 5-cm soil moisture. By comparing FAO simulations with observations, it is found that the FAO method overestimates T and underestimates E, while keeping satisfying ET estimates for drip irrigated wheat. This study suggests that different independent measurement techniques should be implemented to both quantify and reduce uncertainties in the T/ET ratio, and that accurate observations are still needed to improve the modeling of E/T components.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.