In this work, we shall present a novel design of a 3-translational-DOF in-parallel manipulator having 3 linear actuators. Three variable length legs constitute the actuators of this manipulator, whereas two other kinematic chains with passive joints are used to eliminate the three rotations of the platform with respect to the base. This design presents several advantages compared to other designs of similar 3-translational-dof parallel manipulators. First, the proposed design uses only revolute or spherical joints as passive joints and hence, it avoids problems that are inherent to the nature of prismatic joints when loaded in arbitrary way. Second, the actuators are chosen to be linear and to be located in the three legs since this design presents higher rigidity than other. In the second part of this paper, we addressed the problem of kinematic analysis of the proposed in-parallel manipulator. A mixed geometric and vector formulation is used to show that two solutions exist for the forward kinematic analysis. The problem of singularities is also investigated using the same method. In this work, we investigated the singularities of the active legs and the two types of singularity were identified: architectural singularities and configurational singularities. The singularity of the passive chains, used to restrict the motion of the platform to only three translations, is also investigated. In the last part of this paper, we built a 3D solid model of the platform and the amplitude of rotation due to the deformation of the different links under some realistic load was determined. This allowed us to estimate the “orientation error” of the platform due to external moments. Moreover, this analysis allowed us to compare the proposed design (over constrained) with a modified one (not over constrained). This comparison confirmed the conclusion that the over constraint design has a better rigidity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.