Nearshore waters of the California Current System (California CS) already have a low carbonate saturation state, making them particularly susceptible to ocean acidification. We used eddy-resolving model simulations to study the potential development of ocean acidification in this system up to the year 2050 under the Special Report on Emissions Scenarios A2 and B1 scenarios. In both scenarios, the saturation state of aragonite Ω(arag) is projected to drop rapidly, with much of the nearshore region developing summer-long undersaturation in the top 60 meters within the next 30 years. By 2050, waters with Ω(arag) above 1.5 will have largely disappeared, and more than half of the waters will be undersaturated year-round. Habitats along the sea floor will become exposed to year-round undersaturation within the next 20 to 30 years. These projected events have potentially major implications for the rich and diverse ecosystem that characterizes the California CS.
The coastal upwelling region of the California Current System (CalCS) is a well‐known site of high productivity and lateral export of nutrients and organic matter, yet neither the magnitude nor the governing processes of this offshore transport are well quantified. Here we address this gap using a high‐resolution (5 km) coupled physical‐biogeochemical numerical simulation (ROMS). The results reveal (i) that the offshore transport is a very substantial component of any material budget in this region, (ii) that it reaches more than 800 km into the offshore domain, and (iii) that this transport is largely controlled by mesoscale processes, involving filaments and westward propagating eddies. The process starts in the nearshore areas, where nutrient and organic matter‐rich upwelled waters pushed offshore by Ekman transport are subducted at the sharp lateral density gradients of upwelling fronts and filaments located at ∼25–100 km from the coast. The filaments are very effective in transporting the subducted material further offshore until they form eddies at their tips at about 100–200 km from the shore. The cyclonic eddies tend to trap the cold, nutrient, and organic matter‐rich waters of the filaments, whereas the anticyclones formed nearby encapsulate the low nutrient and low organic matter waters around the filament. After their detachment, both types of eddies propagate further in offshore direction, with a speed similar to that of the first baroclinic mode Rossby waves, providing the key mechanism for long‐range transport of nitrate and organic matter from the coast deep into the offshore environment.
Abstract. Due to seasonal upwelling, the upper ocean waters of the California Current System (CCS) have a naturally low pH and aragonite saturation state ( arag ), making this region particularly prone to the effects of ocean acidification. Here, we use the Regional Oceanic Modeling System (ROMS) to conduct preindustrial and transient simulations of ocean biogeochemistry in the CCS. The transient simulations were forced with increasing atmospheric pCO 2 and increasing oceanic dissolved inorganic carbon concentrations at the lateral boundaries, as projected by the NCAR CSM 1.4 model for the IPCC SRES A2 scenario. Our results show a large seasonal variability in pH (range of ∼ 0.14) and arag (∼ 0.2) for the nearshore areas (50 km from shore). This variability is created by the interplay of physical and biogeochemical processes. Despite this large variability, we find that present-day pH and arag have already moved outside of their simulated preindustrial variability envelopes (defined by ±1 temporal standard deviation) due to the rapidly increasing concentrations of atmospheric CO 2 . The nearshore surface pH of the northern and central CCS are simulated to move outside of their present-day variability envelopes by the mid-2040s and late 2030s, respectively. This transition may occur even earlier for nearshore surface arag , which is projected to depart from its present-day variability envelope by the early-to mid-2030s. The aragonite saturation horizon of the central CCS is projected to shoal into the upper 75 m within the next 25 yr, causing near-permanent undersaturation in subsurface waters. Due to the model's overestimation of arag , this transition may occur even earlier than simulated by the model. Overall, our study shows that the CCS joins the Arctic and Southern oceans as one of only a few known ocean regions presently approaching the dual threshold of widespread and near-permanent undersaturation with respect to aragonite and a departure from its variability envelope. In these regions, organisms may be forced to rapidly adjust to conditions that are both inherently chemically challenging and also substantially different from past conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.