This article presents the hydrodynamic and thermal characteristics of transfers by forced, mixed and natural convection in a room ventilated by air displacement. The main objective is to study the effect of a porous partition on the heat transfer and therefore the thermal comfort in the room. The fluid flow future in the cavity and the heat transfer rate on the active wall has been analyzed for different permeabilities: 10-6≤Da≤10. The other control parameters are obviously, the Rayleigh number and the Reynolds number varied in the rows: 10≤Ra≤106 and 50≤Re≤500 respectively. The transfer equations write were solved by the Lattice Boltzmann Multiple Relaxation Time method. For flow in porous media an additional term is added in the standard LB equations, to consider the effect of the porous media, based on the generalized model, the Brinkman-Forchheimer-extended Darcy model. The most important conclusion is that the Darcian regime start for small Darcy number Da<10-4. Spatial competition between natural convection cell and forced convection movement is observed as Ra and Re rise. The effect of Darcy number values and the height of the porous layer is barely visible with a maximum deviation less than 7% over the ranges considered . Note that the natural convection regime is never reached for low Reynolds numbers. For this Re values the cooperating natural convection only improves transfers by around 10% while, for the other Reynolds numbers the improvement in transfers due to natural and forced convections cooperation is more significant.
The objective of this work is to study the effect of the thickness of a porous separation on the thermal performance in a cavity with displacement ventilation. The cold air jet enters and exits through two openings located in the lower and upper parts of the left wall and the right wall respectively. The other horizontal walls are also adiabatic. The hydrodynamic and thermal characteristics of the transfer were studied for three configurations with the same aspect ratio L/H=2. The height Hp of the porous separation was varied between 0.2 and 0.8 where is placed in the center of the cavity. The transfer rates on the active wall for the thicknesses were studied for different permeability therefore different Darcy numbers varying over an interval:10-6≤Da≤10. The dimensionless Rayleigh and Reynolds numbers were taken from the rows: 10≤Ra≤106 and 50≤Re≤500. The governing equations of momentum and energy were solved by the Lettice Boltzmann Multiple Relaxation Time Method (LB-MRT) D2Q9 for the velocity field and D2Q5 for the temperature field. In order to take into account the introduction of the porous medium, an additional term is added to the standard LB equations based on the generalized model (Darcy model extended to Brinkman-Forchheimer).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.