In this article, the effect of plasma treatment of polyethylene powder and glass fibers on the adhesion between polyethylene and glass fibers in composites prepared by rotational molding was studied. In contrast to other processing techniques, such as injection molding, the rotational molding process operates at atmospheric pressure, and no pressure is added to ensure mechanical interlocking. This makes reinforcing the rotomolded product very difficult. Therefore, the formation of chemical bonds is necessary for strong adhesion. Different combinations of untreated polyethylene (UT.PE), plasma-treated polyethylene (PT.PE), untreated and plasma-treated glass fibers were manually mixed and processed by rotational molding. The resulting composites were cut and tested to demonstrate the effect of the treatment on the adhesion between the composite components and on the mechanical properties of the final composites. The results showed that the treatment of both powder and fiber improved the adhesion between the matrix and fibers, thus improving the mechanical properties of the resulting composites compared to those of pure polyethylene samples and composites prepared using untreated components. The tensile strength, tensile modulus, and flexural modulus of the composites prepared using 10-min treated powder with 20 wt% of 40-min treated fibers improved by 20%, 82%, and 98%, respectively, compared to the pure polyethylene samples.
In this research, rotomoulded samples of polyethylene (PE) were mechanically tested to find better applications. The mold was kept in an oven at 260 C with forced convection. Total fabrication time depended on peak internal air temperature (PIAT) used with 200, 220 and 240 C to confirm the fabrication conditions. The plasma treatment of PE and recycled carbon fiber (CF) was used for the improvement of properties. Maximum tensile strength (TS) of 23.1 MPa was observed in 10 wt% CF/PE composites. Scanning electron microscope (SEM) results revealed good mechanical interlocking with higher chemical interaction of carbon fiber of up to 10 wt% with plasma polyethylene leading to good mechanical properties in the composites. Flexural strength (FS) of 19.98-26.02 MPa in the properties was observed plasma treated in the PE with CF (3-10 wt%) combination. Agglomeration in the carbon fiber lowered flexural properties of 13, 15 wt% filler with both plasma and non-plasma PE. The CF (3-10 wt%) with plasma PE showed enhanced impact strength (IS) from 6.84 to 8.64 KJ/m 2 . Maximum TS, FS and IS were observed with peak internal air temperature (PIAT) of 200 C. Surface images showed even distribution of fiber and resin in the plasma treated matrix in 5 wt% CF combinations. The differential scanning calorimetry (DSC) results do not show fluctuations in the melting and crystallization temperatures of the samples after plasma treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.