One key tenet of the raft hypothesis is that the formation of glycosphingolipid- and cholesterol-rich lipid domains can be driven solely by characteristic lipid-lipid interactions, suggesting that rafts ought to form in model membranes composed of appropriate lipids. In fact, domains with raft-like properties were found to coexist with fluid lipid regions in both planar supported lipid layers and in giant unilamellar vesicles (GUVs) formed from 1) equimolar mixtures of phospholipid-cholesterol-sphingomyelin or 2) natural lipids extracted from brush border membranes that are rich in sphingomyelin and cholesterol. Employing headgroup-labeled fluorescent phospholipid analogs in planar supported lipid layers, domains typically several microns in diameter were observed by fluorescence microscopy at room temperature (24 degrees C) whereas non-raft mixtures (PC-cholesterol) appeared homogeneous. Both raft and non-raft domains were fluid-like, although diffusion was slower in raft domains, and the probe could exchange between the two phases. Consistent with the raft hypothesis, GM1, a glycosphingolipid (GSL), was highly enriched in the more ordered domains and resistant to detergent extraction, which disrupted the GSL-depleted phase. To exclude the possibility that the domain structure was an artifact caused by the lipid layer support, GUVs were formed from the synthetic and natural lipid mixtures, in which the probe, LAURDAN, was incorporated. The emission spectrum of LAURDAN was examined by two-photon fluorescence microscopy, which allowed identification of regions with high or low order of lipid acyl chain alignment. In GUVs formed from the raft lipid mixture or from brush border membrane lipids an array of more ordered and less ordered domains that were in register in both monolayers could reversibly be formed and disrupted upon cooling and heating. Overall, the notion that in biomembranes selected lipids could laterally aggregate to form more ordered, detergent-resistant lipid rafts into which glycosphingolipids partition is strongly supported by this study.
As shown earlier, raft-like domains resembling those thought to be present in natural cell membranes can be formed in supported planar lipid monolayers. These liquid-ordered domains coexist with a liquid-disordered phase and form in monolayers prepared both from synthetic lipid mixtures and lipid extracts of the brush border membrane of mouse kidney cells. The domains are detergent-resistant and are highly enriched in the glycosphingolipid GM1. In this work, the properties of these raft-like domains are further explored and compared with properties thought to be central to raft function in plasma membranes. First, it is shown that domain formation and disruption critically depends on the cholesterol density and can be controlled reversibly by treating the monolayers with the cholesterol-sequestering reagent methyl--cyclodextrin. Second, the glycosylphosphatidylinositol-anchored cell-surface protein Thy-1 significantly partitions into the raft-like domains. The extent of this partitioning is reduced when the monolayers contain GM1, indicating that different molecules can compete for domain occupation. Third, the partitioning of a saturated phospholipid analog into the raft phase is dramatically increased (15% to 65%) after cross-linking with antibodies, whereas the distribution of a doubly unsaturated phospholipid analog is not significantly affected by cross-linking (Ϸ10%). This result demonstrates that cross-linking, a process known to be important for certain cell-signaling processes, can selectively translocate molecules to liquid-ordered domains.membrane domains ͉ receptor cross-linking ͉ cholesterol ͉ glycosylphosphatidylinositol-anchored proteins ͉ signal transduction T reatment of cell lysates with cold nonionic detergent and subsequent sucrose gradient centrifugation allows extraction of a detergent-resistant membrane fraction (DRM) (1, 2). The finding that this fraction is enriched in cholesterol and sphingolipids that form a liquid-ordered phase (3, 4) has led to the hypothesis that the DRM arises directly from discrete liquidordered domains in the plasma membrane termed lipid rafts (5, 6). Such domains could be important for membrane trafficking and sorting (1, 7). Moreover, cell signaling molecules are enriched in the DRM, and the partitioning of these molecules into the DRM is altered during signaling (8-12). Extraction of cholesterol from plasma membranes affects the abundance of molecules found in the DRM and impairs processes like membrane trafficking (13, 14) and cell activation (15, 16). These findings suggest that lipid rafts on plasma membranes are maintained by proper cholesterol levels as functional, preassembled signal transduction complexes (17)(18)(19).Although there is accumulating evidence suggesting that some form of lipid domains or clusters are present in cell membranes, there is still considerable controversy surrounding the basic physical properties of these domains (compositional diversity, size, structure, and dynamics) and their relation to the DRM (for review see refs. 20 and...
Thrombin is a multifunctional protease that plays a key role in hemostasis, thrombosis, and inflammation. Most thrombin inhibitors currently used as antithrombotic agents target thrombin's active site and inhibit all of its myriad of activities. Exosites 1 and 2 are distinct regions on the surface of thrombin that provide specificity to its proteolytic activity by mediating binding to substrates, receptors, and cofactors. Exosite 1 mediates binding and cleavage of fibrinogen, proteolytically activated receptors, and some coagulation factors, while exosite 2 mediates binding to heparin and to platelet receptor GPIb-IX-V. The crystal structures of two nucleic acid ligands bound to thrombin have been solved. Previously Padmanabhan and colleagues solved the structure of a DNA aptamer bound to exosite 1 and we reported the structure of an RNA aptamer bound to exosite 2 on thrombin. Based upon these structural studies we speculated that the two aptamers would not compete for binding to thrombin. We observe that simultaneously blocking both exosites with the aptamers leads to synergistic inhibition of thrombin-dependent platelet activation and procoagulant activity. This combination of exosite 1 and exosite 2 inhibitors may provide a particularly effective antithrombotic approach.
Summary. Background and objectives: Platelet binding and activity play important roles in the efficacy of factor VIIa (FVIIa) as a bypassing agent for hemophilia treatment. An analog of FVIIa with increased tissue factor (TF)‐independent activity, NN1731, has been produced by introducing three amino acid changes in the protease domain. NN1731 has a conformation similar to TF‐bound FVIIa, even in the absence of TF. This results in much greater intrinsic proteolytic activity, but similar activity in the presence of TF. Objectives: We hypothesized that these changes would not alter binding to platelets or phospholipid, a characteristic thought to be localized to the Gla domain. The goal of the current work was to compare platelet binding and activity of NN1731 and wild‐type FVIIa. Methods/Results: FVIIa and NN1731 bound identically to phospholipid vesicles as assessed by both activity assays and electrophoretic quasielastic light scattering techniques. However, NN1731 bound to a greater number of sites on activated platelets than FVIIa, as assessed by flow cytometry. Removal of the Gla domain abolished binding of both FVIIa and NN1731. Inhibition of the active site did not reduce NN1731 binding to the level of FVIIa. When corrected for the amount of protein bound, NN1731 had greater activity than FVIIa on platelet surfaces. Conclusions: While the Gla domain is essential for FVIIa binding to platelets, changes in the protease domain in NN1731 enhanced platelet binding as well as proteolytic activity. Features in addition to lipid composition appear to contribute to binding of rFVIIa and, especially, NN1731 to platelets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.