The overflow of the flame plume from the window is the main cause of the vertical spread of the fire on the facade of the building. This paper considers the geometry of the window by taking measures to prevent the flame from propagating along the vertical wall. In this paper, a residential building is taken as an example to evaluate the flame plume characteristics through experimental tests and numerical simulations. The objective of the present study is to study the flame plume characteristics under the air blow on the outer window side of the building. The theoretical equations of the flame tilt angle, non-dimensional temperature and non-dimensional velocity are derived. A series of experimental tests were carried out in a reduced-scale building model corresponding to the changes of lateral blow ventilation velocity. Reduced scale numerical simulations were conducted to verify the experiments. Results showed that the flame tilt angle increases with ventilation velocity increases. Meanwhile, the experimental results were compared with the reduced-scale tests and numerical simulations. These showed a good agreement between experimental results and numerical simulations. All these findings provide theoretical basis for building fire prevention outside window.
Maximum ceiling temperatures in a tunnel with different ventilation velocities with three heat release fires are studied experimentally and theoretically. This article investigates the ventilation velocity effects on maximum ceiling temperature combustible materials around ignition source in tunnel fires. Several fire experimental tests are conducted with longitudinal ventilation velocity changes in a small-scale tunnel (23 m in length, 2 m in width, and 0.98 m in height), where three heat release fires (237, 340, and 567 kW) and their corresponding values in the real tunnel are 20, 30, and 50 MW, respectively. This article modifies the current temperature prediction model taking the ignition materials near the fire source into account in tunnels. Results show that the ceiling maximum temperature increases, corresponding to the burn time when other experimental conditions remain unchanged for a given fire heat level source. The ceiling temperature reduces quickly when the ventilation velocity is increased from 0.5 to 2.0 m/s. Moreover, this article proposes an equation that can be used to estimate the ceiling maximum temperature variation value with three heat release fires in tunnels. Finally, experimental results are also compared with the tunnel ceiling temperature attenuation equations established by Alpert, Heskestad, and Ingason. The equation proposed in this article appears to provide better estimates of ceiling temperature variation than the Kurioka model developed in their scaled experiments. The prediction agrees well with the experimental and measured data by the modified equations of this article.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.