Feature extraction and representation has significant impact on the performance of any machine learning method. Mel Frequency Cepstrum Coefficient (MFCC) is designed to model features of audio signal and is widely used in various fields. This paper aims to review the applications that the MFCC is used for in addition to some issues that facing the MFCC computation and its impact on the model performance. These issues include the use of MFCC for non-acoustic signals, adopting the MFCC alone or combining it with other features, the use of time series versus global representation of the MFCC, following the standard form of the MFCC computation versus modifying its parameters, and supplying the traditional machine learning methods versus the deep learning methods..
Purpose
This paper aims at studying meta-heuristic algorithms. One of the common meta-heuristic optimization algorithms is called grey wolf optimization (GWO). The key aim is to enhance the limitations of the wolves’ searching process of attacking gray wolves.
Design/methodology/approach
The development of meta-heuristic algorithms has increased by researchers to use them extensively in the field of business, science and engineering. In this paper, the K-means clustering algorithm is used to enhance the performance of the original GWO; the new algorithm is called K-means clustering gray wolf optimization (KMGWO).
Findings
Results illustrate the efficiency of KMGWO against to the GWO. To evaluate the performance of the KMGWO, KMGWO applied to solve CEC2019 benchmark test functions.
Originality/value
Results prove that KMGWO is superior to GWO. KMGWO is also compared to cat swarm optimization (CSO), whale optimization algorithm-bat algorithm (WOA-BAT), WOA and GWO so KMGWO achieved the first rank in terms of performance. In addition, the KMGWO is used to solve a classical engineering problem and it is superior.
Gear fault detection is one of the underlying research areas in the field of condition monitoring of rotating machines. Many methods have been proposed as an approach. One of the major tasks to obtain the best fault detection is to examine what type of feature(s) should be taken out to clarify/improve the situation. In this paper, a new method is used to extract features from the vibration signal, called 1D local binary pattern (1D LBP). Vibration signals of a rotating machine with normal, break, and crack gears are processed for feature extraction. The extracted features from the original signals are utilized as inputs to a classifier based onk-Nearest Neighbour (k-NN) and Support Vector Machine (SVM) for three classes (normal, break, or crack). The effectiveness of the proposed approach is evaluated for gear fault detection, on the vibration data obtained from the Prognostic Health Monitoring (PHM’09) Data Challenge. The experiment results show that the 1D LBP method can extract the effective and relevant features for detecting fault in the gear. Moreover, we have adopted the LOSO and LOLO cross-validation approaches to investigate the effects of speed and load in fault detection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.