KOI-13.01, a planet-sized companion in an optical double star was announced as one of the 1235 Kepler planet candidates in February 2011. The transit curves show significant distortion that was stable over the ∼130 days time-span of the data. Here we investigate the phenomenon via detailed analyses of the two components of the double star and a re-reduction of the Kepler data with pixel-level photometry. Our results indicate that KOI-13 is a common proper motion binary, with two rapidly rotating components (v sin i ≈65-70 km/s). We identify the host star of KOI-13.01 and conclude that the transit curve asymmetry is consistent with a companion orbiting a rapidly rotating, possibly elongated star on an oblique orbit. The radius of the transiter is 2.2 R J , implying an irradiated late-type dwarf, probably a hot brown dwarf rather than a planet. KOI-13 is the first example for detecting orbital obliquity for a substellar companion without measuring the Rossiter-McLaughlin effect with spectroscopy.
EX Lup is the prototype of the EXor class of eruptive young stars. These objects show optical outbursts which are thought to be related to runaway accretion onto the star. In a previous study we observed in situ crystal formation in the disk of EX Lup during its latest outburst in 2008, making the object an ideal laboratory to investigate circumstellar crystal formation and transport. This outburst was monitored by a campaign of ground-based and Spitzer Space Telescope observations. Here we modeled the spectral energy distribution (SED) of EX Lup in the outburst from optical to millimeter wavelengths with a two-dimensional radiative transfer code. Our results showed that the shape of the SED at optical wavelengths was more consistent with a single-temperature blackbody than a temperature distribution. We also found that this single-temperature component emitted 80%-100% of the total accretion luminosity. We concluded that a thermal instability, the most widely accepted model of EXor outbursts, was likely not the triggering mechanism of the 2008 outburst of EX Lup. Our mid-infrared Spitzer spectra revealed that the strength of all crystalline bands between 8 and 30 μm increased right after the end of the outburst. Six months later, however, the crystallinity in the 10 μm silicate feature complex decreased. Our modeling of the mid-infrared spectral evolution of EX Lup showed that, although vertical mixing should be stronger during the outburst than in the quiescent phase, fast radial transport of crystals (e.g., by stellar/disk wind) was required to reproduce the observed mid-infrared spectra.
EX Lup is the prototype of the EXor class of young eruptive stars: objects showing repetitive brightenings due to increased accretion from the circumstellar disk to the star. In this paper, we report on medium-resolution near-infrared spectroscopy of EX Lup taken during its extreme outburst in 2008, as well as numerical modeling with the aim of determining the physical conditions around the star. We detect emission lines from atomic hydrogen, helium, and metals, as well as first overtone bandhead emission from carbon monoxide. Our results indicate that the emission lines are originating from gas located in a dust-free region within ≈0.2 AU of the star. The profile of the CO bandhead indicates that the CO gas has a temperature of 2500 K, and is located in the inner edge of the disk or in the outer parts of funnel flows. The atomic metals are probably co-located with the CO. Some metallic lines are fluorescently excited, suggesting direct exposure to ultraviolet photons. The Brackett series indicates emission from hot (10 000 K) and optically thin gas. The hydrogen lines display a strong spectro-astrometric signal, suggesting that the hydrogen emission is probably not coming from an equatorial boundary layer; a funnel flow or disk wind origin is more likely. This picture is broadly consistent with the standard magnetospheric accretion model usually assumed for normally accreting T Tauri stars. Our results also set constraints on the eruption mechanism, supporting a model where material piles up around the corotation radius and episodically falls onto the star.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.