Thermal neutron capture γ-ray spectra for 16,17,18 16,17,18 O(n,γ) reactions were measured. Absolute transition probabilities were determined for each reaction by a least-squares fit of the γ-ray intensities to the decay schemes after accounting for the contribution from internal conversion. The transition probability for the 870.76 keV γ-ray from 16 O(n,γ) was measured as Pγ (871)=96.6±0.5% and the thermal neutron cross section for this γ-ray was determined as 0.164±0.003 mb by internal standardization with multiple targets containing oxygen and stoichiometric quantities of hydrogen, nitrogen, and carbon whose γ-ray cross sections were previously standardized. The γ-ray cross sections for the 17,18 O(n,γ) and 2 H(n,γ) reactions were then determined relative to 870.76-keV γ-ray cross section after accounting for the isotopic abundances in the targets. We determined the following total radiative thermal neutron cross sections for each isotope from the γ-ray cross sections and transition probabilities; σ0(
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.