Major depressive disorder is a common and complex mental disorder with unknown etiology. GABAergic dysfunction is likely to contribute to the pathophysiology since disrupted GABAergic systems are well documented in depressed patients. Here we studied structural changes in the hippocampal GABAergic network using the chronic mild stress (CMS) model, as one of the best validated animal models for depression. Rats were subjected to 9 weeks of daily stress and behaviorally characterized using the sucrose consumption test into anhedonic and resilient animals based on their response to stress. Different subtypes of GABAergic interneurons were visualized by immunohistochemistry using antibodies for parvalbumin (PV), calretinin (CR), calbindin (CB), cholecystokinin (CCK), somatostatin (SOM), and neuropeptide Y (NPY). We used an unbiased quantification method to systematically count labeled cells in different subareas of the dorsal and ventral hippocampus. Chronic stress reduced the number of specific interneurons in distinct hippocampal subregions significantly. PV+ and CR+ neurons were reduced in all dorsal subareas, whereas in the ventral part only the CA1 was affected. Stress had the most pronounced effect on the NPY+ and SOM+ cells and reduced their number in almost all dorsal and ventral subareas. Stress had no effect on the CCK+ and CB+ interneurons. In most cases the effect of stress was irrespective to the behavioral phenotype. However, in a few specific areas the number of SOM+, NPY+, and CR+ neurons were significantly reduced in anhedonic animals compared to the resilient group. Overall, these data clearly demonstrate that chronic stress affects the structural integrity of specific GABAergic neuronal subpopulations and this should also affect the functioning of these hippocampal GABAergic networks.
Alzheimer’s disease (AD) is one of the most common neurodegenerative diseases, with increasing prevalence affecting millions of people worldwide. Currently, only autopsy is able to confirm the diagnosis with a 100% certainty, therefore, biomarkers from body fluids obtained by non-invasive means provide an attractive alternative for the diagnosis of Alzheimer`s disease. Global changes of the protein profile were examined by quantitative proteomics; firstly, electrophoresis and LC-MS/MS were used, thereafter, SRM-based targeted proteomics method was developed and applied to examine quantitative changes of tear proteins. Alterations in the tear flow rate, total tear protein concentration and composition of the chemical barrier specific to AD were demonstrated, and the combination of lipocalin-1, dermcidin, lysozyme-C and lacritin was shown to be a potential biomarker, with an 81% sensitivity and 77% specificity.
Clinical and experimental data suggest that fronto-cortical GABAergic deficits contribute to the pathophysiology of major depressive disorder (MDD). To further test this hypothesis, we used a well characterized rat model for depression and examined the effect of stress on GABAergic neuron numbers and GABA-mediated synaptic transmission in the medial prefrontal cortex (mPFC) of rats. Adult male Wistar rats were subjected to 9-weeks of chronic mild stress (CMS) and based on their hedonic-anhedonic behavior they were behaviorally phenotyped as being stress-susceptible (anhedonic) or stress-resilient. Post mortem quantitative histopathology was used to examine the effect of stress on parvalbumin (PV)-, calretinin- (CR), calbindin- (CB), cholecystokinin- (CCK), somatostatin-(SST) and neuropeptide Y-positive (NPY+) GABAergic neuron numbers in all cortical subareas of the mPFC (anterior cingulate (Cg1), prelimbic (PrL) and infralimbic (IL) cortexes). In vitro, whole-cell patch-clamp recordings from layer II–III pyramidal neurons of the ventral mPFC was used to examine GABAergic neurotransmission. The cognitive performance of the animals was assessed in a hippocampal-prefrontal-cortical circuit dependent learning task. Stress exposure reduced the number of CCK-, CR- and PV-positive GABAergic neurons in the mPFC, most prominently in the IL cortex. Interestingly, in the stress-resilient animals, we found higher number of neuropeptide Y-positive neurons in the entire mPFC. The electrophysiological analysis revealed reduced frequencies of spontaneous and miniature IPSCs in the anhedonic rats and decreased release probability of perisomatic-targeting GABAergic synapses and alterations in GABAB receptor mediated signaling. In turn, pyramidal neurons showed higher excitability. Anhedonic rats were also significantly impaired in the object-place paired-associate learning task. These data demonstrate that long-term stress results in functional and structural deficits of prefrontal GABAergic networks. Our findings support the concept that fronto-limbic GABAergic dysfunctions may contribute to emotional and cognitive symptoms of MDD.
Dendritic cells are considered as the main coordinators of both mucosal and systemic immune responses, thus playing a determining role in shaping the outcome of effector cell responses. However, it is still uncovered how primary human monocyte-derived DC (moDC) populations drive the polarization of helper T (Th) cells in the presence of commensal bacteria harboring unique immunomodulatory properties. Furthermore, the individual members of the gut microbiota have the potential to modulate the outcome of immune responses and shape the immunogenicity of differentiating moDCs via the activation of retinoic acid receptor alpha (RARα). Here, we report that moDCs are able to mediate robust Th1 and Th17 responses upon stimulation by Escherichia coli Schaedler or Morganella morganii, while the probiotic Bacillus subtilis strain limits this effect. Moreover, physiological concentrations of all-trans retinoic acid (ATRA) are able to re-program the differentiation of moDCs resulting in altered gene expression profiles of the master transcription factors RARα and interferon regulatory factor 4, and concomitantly regulate the cell surface expression levels of CD1 proteins and also the mucosa-associated CD103 integrin to different directions. It was also demonstrated that the ATRA-conditioned moDCs exhibited enhanced pro-inflammatory cytokine secretion while reduced their co-stimulatory and antigen-presenting capacity thus reducing Th1 and presenting undetectable Th17 type responses against the tested microbiota strains. Importantly, these regulatory circuits could be prevented by the selective inhibition of RARα functionality. These results altogether demonstrate that selected commensal bacterial strains are able to drive strong effector immune responses by moDCs, while in the presence of ATRA, they support the development of both tolerogenic and inflammatory moDC in a RARα-dependent manner.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.