Application of virus therapy to treat human neoplasms has over a three decade history. MTH-68/H, a live attenuated oncolytic viral strain of the Newcastle disease virus, is one of the viruses used in the treatment of different malignancies. Here we report on the administration of MTH-68/H to patients with glioblastoma multiforme, the most common and most aggressive neuroectodermal neoplasm with a poor prognosis, averaging six months to a year. Four cases of advanced high-grade glioma were treated with MTH-68/H after the conventional modalities of anti-neoplastic therapies had failed. This treatment resulted in survival rates of 5-9 years, with each patient still living today. Against all odds, each patient resumed a lifestyle that resembles their previous daily routines and enjoys a good quality of life, Each of these patients has regularly received MTH-68/H as their sole form of onco-therapy for a number of years now without interruption.
Cellular exposure to hypoxia results in altered gene expression in a range of physiologic and pathophysiologic states. Discrete cohorts of genes can be either up- or down-regulated in response to hypoxia. While the Hypoxia-Inducible Factor (HIF) is the primary driver of hypoxia-induced adaptive gene expression, less is known about the signalling mechanisms regulating hypoxia-dependent gene repression. Using RNA-seq, we demonstrate that equivalent numbers of genes are induced and repressed in human embryonic kidney (HEK293) cells. We demonstrate that nuclear localization of the Repressor Element 1-Silencing Transcription factor (REST) is induced in hypoxia and that REST is responsible for regulating approximately 20% of the hypoxia-repressed genes. Using chromatin immunoprecipitation assays we demonstrate that REST-dependent gene repression is at least in part mediated by direct binding to the promoters of target genes. Based on these data, we propose that REST is a key mediator of gene repression in hypoxia.
The avian paramyxovirus Newcastle disease virus (NDV) causes severe infections in birds. It is essentially nonpathogenic in rodents and human beings but was found to have an oncolytic potential against certain types of human malignancies. An attenuated NDV vaccine (designated MTH-68/H) was found to cause regression of various human tumors, but the mechanism of its oncolytic action and its selectivity toward malignant cells remain poorly understood. NDV was reported to cause apoptotic death in several avian cultured cell types. Programmed cell death may thus be the basis for the oncolytic effect of NDV vaccines. To test this possibility, we chose the PC12 rat pheochromocytoma cell line, a widely used model system for apoptosis. The MTH-68/H vaccine was found to cause apoptotic death of PC12 cells in a dose-dependent manner. A brief exposure of cells to the virus was found to trigger the apoptotic response. Cell death induced by the vaccine was not accompanied by significant alterations in the major mitogen-activated protein kinase pathways of these cells. Apoptotic DNA fragmentation was not affected by stimulating growth factor pathways or signaling mechanisms mediated by protein kinase C or the second messenger, calcium. In contrast, stimulation of protein kinase A by cyclic adenosine monophosphate analogs gave partial protection against the virus. PC12 cells thus provide a useful model system to study the effects of NDV on cell survival at the molecular level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.