In this paper we present a unified analysis of the BMAP/G/1 cyclic polling model and its application to the gated and exhaustive service disciplines as examples. The applied methodology is based on the separation of the analysis into service discipline independent and dependent parts. New expressions are derived for the vectorgenerating function of the stationary number of customers and for its mean in terms of vector quantities depending on the service discipline. They are valid for a broad class of service disciplines and both for zero-and nonzero-switchover-times polling models.We present the service discipline specific solution for the nonzero-switchovertimes model with gated and exhaustive service disciplines. We set up the governing equations of the system by using Kronecker product notation. They can be numerically solved by means of a system of linear equations. The resulting vectors are used to compute the service discipline specific vector quantities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.