Recent studies demonstrate that aging exacerbates hypertension-induced cognitive decline, but the specific age-related mechanisms remain elusive. Cerebral microhemorrhages (CMHs) are associated with rupture of small intracerebral vessels and are thought to progressively impair neuronal function. To determine whether aging exacerbates hypertension-induced CMHs young (3 months) and aged (24 months) mice were treated with angiotensin II plus L-NAME. We found that the same level of hypertension leads to significantly earlier onset and increased incidence of CMHs in aged mice than in young mice, as shown by neurological examination, gait analysis, and histological assessment of CMHs in serial brain sections. Hypertension-induced cerebrovascular oxidative stress and redox-sensitive activation of matrix metalloproteinases (MMPs) were increased in aging. Treatment of aged mice with resveratrol significantly attenuated hypertension-induced oxidative stress, inhibited vascular MMP activation, significantly delayed the onset, and reduced the incidence of CMHs. Collectively, aging promotes CMHs in mice likely by exacerbating hypertension-induced oxidative stress and MMP activation. Therapeutic strategies that reduce microvascular oxidative stress and MMP activation may be useful for the prevention of CMHs, protecting neurocognitive function in high-risk elderly patients.
SummaryClinical and experimental studies show that aging exacerbates hypertension‐induced cerebral microhemorrhages (CMHs), which progressively impair neuronal function. There is growing evidence that aging promotes insulin‐like growth factor 1 (IGF‐1) deficiency, which compromises multiple aspects of cerebromicrovascular and brain health. To determine the role of IGF‐1 deficiency in the pathogenesis of CMHs, we induced hypertension in mice with liver‐specific knockdown of IGF‐1 (Igf1 f/f + TBG‐Cre‐AAV8) and control mice by angiotensin II plus l‐NAME treatment. In IGF‐1‐deficient mice, the same level of hypertension led to significantly earlier onset and increased incidence and neurological consequences of CMHs, as compared to control mice, as shown by neurological examination, gait analysis, and histological assessment of CMHs in serial brain sections. Previous studies showed that in aging, increased oxidative stress‐mediated matrix metalloprotease (MMP) activation importantly contributes to the pathogenesis of CMHs. Thus, it is significant that hypertension‐induced cerebrovascular oxidative stress and MMP activation were increased in IGF‐1‐deficient mice. We found that IGF‐1 deficiency impaired hypertension‐induced adaptive media hypertrophy and extracellular matrix remodeling, which together with the increased MMP activation likely also contributes to increased fragility of intracerebral arterioles. Collectively, IGF‐1 deficiency promotes the pathogenesis of CMHs, mimicking the aging phenotype, which likely contribute to its deleterious effect on cognitive function. Therapeutic strategies that upregulate IGF‐1 signaling in the cerebral vessels and/or reduce microvascular oxidative stress, and MMP activation may be useful for the prevention of CMHs, protecting cognitive function in high‐risk elderly patients.
Elevation of intraluminal pressure increases vasomotor tone, which thought to have a substantial role in regulation of cerebral blood flow (CBF). Interestingly, responses of cerebral vessels to increases in flow varied and have not been studied in human cerebral arteries. We hypothesized that increases in flow elicit constrictions of isolated human and rat cerebral arteries and aimed to elucidate the underlying mechanisms. Human cerebral arteries and rat middle cerebral arteries constricted to increases in flow (P < 0.05). Simultaneous increase in intraluminal flow + pressure further reduced the diameter compared with pressure-induced changes (P < 0.05), leading to constant estimated CBF. Flow-induced constrictions were abolished by HET0016 (inhibitor of synthesis of 20-hydroxyeicosatetraenoic acid (20-HETE) or inhibition of COXs or blocking TP (thromboxane A 2 /prostaglandin H 2 , receptors and attenuated by scavenging reactive oxygen species (ROS). Flow-enhanced ROS formation was significantly reduced by HET0016. In conclusion, in human and rat cerebral arteries (1) increases in flow elicit constrictions, (2) signaling mechanism of flow-induced constriction of cerebral arteries involves enhanced production of ROS, COX activity, and mediated by 20-HETE via TP receptors, and (3) we propose that simultaneous operation of pressure-and flow-induced constrictions is necessary to provide an effective autoregulation of CBF.
Epidemiological studies demonstrate that in addition to the increased prevalence of hypertension in old patients, the deleterious cerebrovascular effects of hypertension (including atherosclerosis, stroke, and vascular cognitive impairment) are also exacerbated in elderly individuals. The cellular mechanisms by which aging and hypertension interact to promote cerebrovascular pathologies are not well understood. To test the hypothesis that aging exacerbates high pressure-induced mitochondrial oxidative stress, we exposed isolated segments of the middle cerebral arteries of young (3 months) and aged (24 months) C57BL/6 mice to 60 or 140 mmHg intraluminal pressure and assessed changes in mitochondrial reactive oxygen species production using a mitochondria-targeted redox-sensitive fluorescent indicator dye (MitoSox) by confocal microscopy. Perinuclear MitoSox fluorescence was significantly stronger in high pressure-exposed middle cerebral arteries compared with middle cerebral arteries of the same animals exposed to 60 mmHg, indicating that high pressure increases mitochondrial reactive oxygen species production in the smooth muscle cells of cerebral arteries. Comparison of young and aged middle cerebral arteries showed that aging exacerbates high pressure-induced mitochondrial reactive oxygen species production in cerebral arteries. We propose that increased mechanosensitive mitochondrial oxidative stress may potentially exacerbate cerebrovascular injury and vascular inflammation in aging.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.