Actin filaments propelled in vitro by groups of skeletal muscle myosin motors exhibit distinct phases of active sliding or arrest, whose occurrence depends on actin length (L) within a range of up to 1.0 μm. Smooth muscle myosin filaments are exponentially distributed with ≈150 nm average length in vivo--suggesting relevance of the L-dependence of myosin group kinetics. Here, we found L-dependent actin arrest and sliding in in vitro motility assays of smooth muscle myosin. We perturbed individual myosin kinetics with varying, physiological concentrations of phosphate (Pi, release associated with main power stroke) and adenosine diphosphate (ADP, release associated with minor mechanical step). Adenosine triphosphate was kept constant at physiological concentration. Increasing [Pi] lowered the fraction of time for which actin was actively sliding, reflected in reduced average sliding velocity (ν) and motile fraction (fmot, fraction of time that filaments are moving); increasing [ADP] increased the fraction of time actively sliding and reduced the velocity while sliding, reflected in reduced ν and increased fmot. We introduced specific Pi and ADP effects on individual myosin kinetics into our recently developed mathematical model of actin propulsion by myosin groups. Simulations matched our experimental observations and described the inhibition of myosin group kinetics. At low [Pi] and [ADP], actin arrest and sliding were reflected by two distinct chemical states of the myosin group. Upon [Pi] increase, the probability of the active state decreased; upon [ADP] increase, the probability of the active state increased, but the active state became increasingly similar to the arrested state.
Despite an extensive theoretical and numerical background, the translocation ratchet mechanism, which is fundamental for the transmembrane transport of biomolecules, has never been experimentally reproduced at the nanoscale. Only the Sec61 and bacterial type IV pilus pores were experimentally shown to exhibit a translocation ratchet mechanism. Here we designed a synthetic translocation ratchet and quantified its efficiency as a nanopump. We measured the translocation frequency of DNA molecules through nanoporous membranes and showed that polycations at the trans side accelerated the translocation in a ratchet-like fashion. We investigated the ratchet efficiency according to geometrical and kinetic parameters and observed the ratchet to be only dependent on the size of the DNA molecule with a power law N − 0.6 . A threshold length of 3 kbp was observed, below which the ratchet did not operate. We interpreted this threshold in a DNA looping model, which quantitatively explained our results.
The in vitro motility assay is a valuable tool to understand motor protein mechanics, but existing algorithms are not optimized for accurate time resolution. We propose an algorithm that combines trace detection with a time-stamped analysis. By tracking filament ends, we minimize data loss from overlapping and crossing filaments. A movement trace formed by each filament end is created by time-stamping when the filament either first (filament tip) or last (filament tail) occupies a pixel. A frame number vs distance curve is generated from this trace, which is segmented into regions by slope to detect stop-and-go movement. We show, using generated mock motility videos, accurate detection of velocity and motile fraction changes for velocities <0.05 pixels per frame, without manual trace dropping and regardless of filament crossings.Compared with established algorithms we show greatly improved accuracy in velocity and motile fraction estimation, with greatly reduced user effort. We tested two actual motility experiments: 1) Adenosine triphosphate (ATP) added to skeletal myosin in rigor; 2) myosin light chain phosphatase (MLCP) added to phasic smooth muscle myosin. Our algorithm revealed previously undetectable features: 1) rapid increase in motile fraction paralleled by a slow increase in velocity as ATP concentration increases; 2) simultaneous reductions in velocity and motile fraction as MLCP diffuses into the motility chamber at very low velocities. Our algorithm surpasses existing algorithms in the resolution of time dependent changes in motile fraction and velocity at a wide range of filament lengths and velocities, with minimal user input and CPU time.
Smooth muscle (SM) is found in most hollow organs of the body. Phasic SM, as found in the gut, contracts to propel content, whereas tonic SM, as found in most blood vessels, maintains tension. This force maintenance is referred to as the latch state and occurs at low levels of myosin activation (myosin light chain [LC20] phosphorylation). Molecular mechanisms have been proposed to explain the latch state but have been studied only at the whole-muscle level because of technological limitations. In the current study, an assay chamber was devised to allow injection of myosin light chain phosphatase (MLCP) during laser trap and in vitro motility assays, without creating bulk flow, to reproduce latch state conditions at the molecular level. Using the laser trap in a single-beam mode, an actin filament was brought in contact with several myosin molecules on a pedestal. Myosin pulled on the actin filament until a plateau force was reached, at which point, MLCP was injected. Force maintenance was observed during LC20 dephosphorylation, the level of which was assessed in a parallel in vitro motility assay performed in the same conditions. Force was maintained longer for myosin purified from tonic SM than from phasic SM. These data support the longstanding dogma of strong bonds caused by dephosphorylated, noncycling cross-bridges. Furthermore, MLCP injection in an in vitro motility mixture assay performed with SM and skeletal muscle myosin suggests that the maintenance of these strong bonds is possible only if no energy is provided by surrounding actively cycling myosin molecules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.