Abstract. This is the first in a series of papers studying w-knots, and more generally, w-knotted objects (w-braids, w-tangles, etc.). These are classes of knotted objects which are wider, but weaker than their "usual" counterparts.The group of w-braids was studied (under the name "welded braids") by Fenn, Rimanyi and Rourke [FRR] and was shown to be isomorphic to the McCool group [Mc] of "basisconjugating" automorphisms of a free group F n -the smallest subgroup of Aut(F n ) that contains both braids and permutations. Brendle and Hatcher [BH], in work that traces back to Goldsmith [Gol], have shown this group to be a group of movies of flying rings in R 3 . Satoh [Sa] studied several classes of w-knotted objects (under the name "weakly-virtual") and has shown them to be closely related to certain classes of knotted surfaces in R 4 . So w-knotted objects are algebraically and topologically interesting.In this article we study finite type invariants of w-brainds and w-knots. Following Berceanu and Papadima [BP], we construct homomorphic universal finite type invariants of w-braids. We find that the universal finite type invariant of w-knots is essentially the Alexander polynomial.Much as the spaces A of chord diagrams for ordinary knotted objects are related to metrized Lie algebras, we find that the spaces A w of "arrow diagrams" for w-knotted objects are related to not-necessarily-metrized Lie algebras. Many questions concerning w-knotted objects turn out to be equivalent to questions about Lie algebras, and in later papers of this series we re-interpret Alekseev-Torossian's [AT] work on Drinfel'd associators and the Kashiwara-Vergne problem as a study of w-knotted trivalent graphs.
Abstract. This is the second in a series of papers dedicated to studying w-knots, and more generally, w-knotted objects (w-braids, w-tangles, etc.). These are classes of knotted objects that are wider but weaker than their "usual" counterparts. To get (say) w-knots from usual knots (or u-knots), one has to allow non-planar "virtual" knot diagrams, hence enlarging the the base set of knots. But then one imposes a new relation beyond the ordinary collection of Reidemeister moves, called the "overcrossings commute" relation, making wknotted objects a bit weaker once again. Satoh [Sa] studied several classes of w-knotted objects (under the name "weakly-virtual") and has shown them to be closely related to certain classes of knotted surfaces in R 4 . In this article we study finite type invariants of w-tangles and w-trivalent graphs (also referred to as w-tangled foams). Much as the spaces A of chord diagrams for ordinary knotted objects are related to metrized Lie algebras, the spaces A w of "arrow diagrams" for w-knotted objects are related to not-necessarily-metrized Lie algebras. Many questions concerning w-knotted objects turn out to be equivalent to questions about Lie algebras. Most notably we find that a homomorphic universal finite type invariant of w-foams is essentially the same as a solution of the Kashiwara-Vergne [KV] conjecture and much of the Alekseev-Torossian [AT] work on Drinfel'd associators and Kashiwara-Vergne can be re-interpreted as a study of w-foams.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.