Understanding students’ learning processes and education-related phenomena by extracting knowledge from educational data sets represents a continuous interest in the educational data mining domain. Due to an accelerated expansion of online learning and digitalisation in education, there is a growing interest in understanding the impact of online learning on the academic performance of students. In this study, we comparatively investigate traditional and synchronous online learning methods to assess students’ performance through the use of deep autoencoders. Experiments performed on real data sets collected in both online and traditional learning environments showed that autoencoders are able to detect hidden patterns in academic data sets unsupervised; these patterns are valuable for the prediction of students’ performance. The obtained results emphasized that, for the considered case studies, traditional evaluations are a little more accurate than online evaluations. Still, after applying a one-tailed paired Wilcoxon signed-rank test, no statistically significant difference between the traditional and online evaluations was observed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.