During the past 15 years, several genetically altered mouse models of human Alzheimer’s disease (AD) have been developed. These costly models have greatly facilitated the evaluation of novel therapeutic approaches. Injecting synthetic β-amyloid (Aβ) 1-42 species into different parts of the brain of non-transgenic rodents frequently provided unreliable results, owing to a lack of a genuine characterization of the administered Aβ aggregates. Previously, we have published a new rat AD-model in which protofibrillar-fibrillar Aβ1-42 was administered into rat entorhinal cortex (Sipos 2007). In order to develop a more reliable model, we have injected well-characterized toxic soluble Aβ1-42 species (oligomers, protofibrils and fibrils) intracerebroventricularly (icv) into rat brain. Studies of the distribution of fluorescent-labeled Aβ1-42 in the brain showed that soluble Aβ-species diffused into all parts of the rat brain. After seven days, the Aβ-treated animals showed a significant decrease of spatial memory in Morris water maze test and impairment of synaptic plasticity (LTP) measured in acute hippocampal slices. The results of histological studies (decreased number of viable neurons, increased tau levels and decreased number of dendritic spines) also supported that icv administration of well-characterized toxic soluble Aβ species into rat brain provides a reliable rat AD-model.
L-(+)-ergothioneine has antioxidant and anti-inflammatory properties in vitro and in vivo and has uses as a dietary supplement and as an ingredient in foods, cosmetics, and as a pharmaceutical additive. The clastogenic potential and mutagenic of ergothioneine were assessed in vitro and in vivo. Ergothioneine concentrations up to 5000 μg/mL, with and without metabolic activation, was tested in the chromosome aberration assay with CHL cells and found not to induce structural chromosome aberrations. In the in vivo mammalian erythrocyte micronucleus test, ergothioneine was administered orally to male mice at doses up to 1500 mg/kg for potential genotoxic activity. No increase in the frequency of micronucleated polychromatic erythrocytes was observed. Overall, ergothioneine was not genotoxic in these studies and provides additional experimental evidence supporting the safety of its use as a potential dietary supplement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.