As a result of a tragic industrial accident, a highly alkaline red mud sludge inundated settlements and agricultural areas near Ajka, Hungary on October 4, 2010. One of the major concerns about the aftermaths of the accident is the potential health effects of vast amounts of fugitive dust from red mud sediment. Thus, we studied the chemical and physical properties of particles of red mud and its respirable fugitive dust, and performed toxicity measurements. Under unfavorable meteorological conditions dry red mud sediment could emit very high amounts of respirable alkaline particles into the air. The number size distribution of fugitive dust peaks above 1 μm aerodynamic diameter; therefore, its inhalation is unlikely to affect the deep regions of the lungs. No significant mineralogical or elemental fractionation was observed between the sediment and dust, with the major minerals being hematite, cancrinite, calcite, and hydrogarnet. Although the high resuspension potential and alkalinity might pose some problems such as the irritation of the upper respiratory tract and eyes, based on its size distribution and composition red mud dust appears to be less hazardous to human health than urban particulate matter.
Abstract.Organosulfates have recently come into the focus of organic aerosol research as potentially important components of water-soluble secondary organic aerosol (SOA) which now dominate tropospheric fine aerosol. Their presence has been confirmed by the identification of sulfate esters of abundant biogenic carbonyl compounds in both smog chamber and continental aerosol. However, none of the studies have been able to determine the mass contribution of organosulfates to SOA.In this paper, as possibly the very first attempt to quantify organosulfates in ambient aerosol, we inferred the mass concentrations of organosulfates by concurrently determining mass concentrations of total sulfur, sulfate and methanesulfonate in rural fine aerosol using two highly sensitive analytical techniques. Although uncertainties were relatively large, we found that mass concentrations of organosulfates in water-soluble fine aerosol ranged from 0.02 µgS m −3 to 0.09 µgS m −3 yielding a mass contribution of 6-12% to bulk sulfur concentrations (or 6-14% to sulfate concentrations). The inferred size distribution of organosulfates suggested that they possibly form in heterogeneous reactions from semi-volatile carbonyl compounds with subsequent or concurrent condensation of gaseous sulfuric acid producing a refractory organic film on particle surfaces.
Abstract. Organosulfates have recently come into the focus of organic aerosol research as potentially important components of water-soluble secondary organic aerosol (SOA) which now dominate tropospheric fine aerosol. Their presence has been confirmed by the identification of sulfate esters of abundant biogenic carbonyl compounds in both smog chamber and continental aerosol. However, none of the studies have been able to determine the mass contribution of organosulfates to SOA. In this paper, as possibly the very first attempt to quantify organosulfates in ambient aerosol, we inferred the mass concentrations of organosulfates by concurrently determining mass concentrations of total sulfur, sulfate and methanesulfonate in rural fine aerosol using two highly sensitive analytical techniques. Although uncertainties were relatively large, we found that mass concentrations of organosulfates in water-soluble fine aerosol ranged from 0.02 μgS m−3 to 0.09 μgS m−3 yielding a mass contribution of 6–12% to bulk sulfur concentrations (or 6–14% to sulfate concentrations). The inferred size distribution of organosulfates suggested that they possibly form in heterogeneous reactions from semi-volatile carbonyl compounds with subsequent or concurrent condensation of gaseous sulfuric acid producing a refractory organic film on particle surfaces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.