In this paper, we analyzed the live fish trajectory recorded from an experiment in an experimental vertical slot fishway. Combined with a numerical simulation, we demonstrated that randomness shown in fish trajectory might not merely be attributed to fish's random choices in its swimming, also could be an adaption consequence to the bulk unsteady turbulent flow structure. Simple superposing the fish trajectory on the time-averaged flow field obtained either by interpolating on discrete point measurements or numerical simulation is not an ideal method for fish movement description in fishway engineering. How to model the fish paths in transient flow and the necessity of simultaneous recording of the flow field and the fish locomotion are challenging topics. The suggested spectrum analysis of the flow field may provide a new general method to reproduce the fish trajectory in a complex turbulent flow.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.