Plants of the genus Zingiber (Family Zingiberaceae) are widely used throughout the world as food and medicinal plants. They represent very popular herbal remedies in various traditional healing systems; in particular, rhizome of Zingiber spp. plants has a long history of ethnobotanical uses because of a plethora of curative properties. Antimicrobial activity of rhizome essential oil has been extensively confirmed in vitro and attributed to its chemical components, mainly consisting of monoterpene and sesquiterpene hydrocarbons such as α-zingiberene, ar-curcumene, β-bisabolene and β-sesquiphellandrene. In addition, gingerols have been identified as the major active components in the fresh rhizome, whereas shogaols, dehydrated gingerol derivatives, are the predominant pungent constituents in dried rhizome. Zingiber spp. may thus represent a promising and innovative source of natural alternatives to chemical food preservatives. This approach would meet the increasing concern of consumers aware of the potential health risks associated with the conventional antimicrobial agents in food. This narrative review aims at providing a literature overview on Zingiber spp. plants, their cultivation, traditional uses, phytochemical constituents and biological activities.
Plants belonging to Melaleuca genus (Myrtaceae family) are native to Oceania, where they have been used for ages by Aborigine people in Australian traditional medicine, mainly because of their broad-spectrum antimicrobial activity. Although, M. linariifolia, M. dissitiflora, and other species of Melaleuca can also be used, the tea tree oil, an essential oil obtained from M. alternifolia shows the longest history of medicinal uses. Tea tree oil contains for the 80-90% several monoterpenes (terpinen-4-ol, α-terpinene, 1,8-cineol, p-cymene, α-terpineol, α-pinene, terpinolene, limonene, and sabinene). Sesquiterpenes and aromatic compounds further compose this oil. The essential oil of Melaleuca spp. has been reported to possess effective antibacterial and antifungal properties in vitro. In particular, data show that 1,8-cineol, terpinen-4-ol and methyl eugenol play the key role in mediating this oil's antimicrobial activity. Copyright © 2017 John Wiley & Sons, Ltd.
The genus Echinacea consists of 11 taxa of herbaceous and perennial flowering plants. In particular, Echinacea purpurea (L.) Moench is widely cultivated all over the United States, Canada, and in Europe, exclusively in Germany, for its beauty and reported medicinal properties. Echinacea extracts have been used traditionally as wound healing to improve the immune system and to treat respiratory symptoms caused by bacterial infections. Echinacea extracts have demonstrated antioxidant and antimicrobial activities, and to be safe. This survey aims at reviewing the medicinal properties of Echinacea species, their cultivation, chemical composition, and the potential uses of these plants as antioxidant and antibacterial agents in foods and in a clinical context. Moreover, the factors affecting the chemical composition of Echinacea spp. are also covered.
Matricaria is a widespread genus of flowering plants of the family Asteraceae that grow in temperate regions of Europe, Asia, America and Africa. Some of the species are also naturalized in Australia. Some species of this genus such as Chamomiles are recognized medicinal plants and cultivated in several countries for commercial purposes: to obtain its blue essence, as herbal tea, and for pharmaceutical or cosmeceutical uses. The phytochemical composition of Matricaria spp. includes volatile terpenoids (e.g., α-bisabolol, bisabolol oxide A and B, β-trans-farnesene and chamazulene), sesquiterpene lactones such as matricin, and phenolic compounds (flavonoids, coumarins and phenolic acids). Their essential oil is obtained from the fresh or dried inflorescences by steam distillation, and additionally cohobation of the remaining water. The volatile composition of the essential oil, especially the content of the valuable components α-bisabolol and chamazulene, depends on the plant part, origin and quality of the source, genetic, and environmental factors. Moreover, other parameters, such as season of harvest and methods of extraction, can affect the extraction yield of the essential oils/extracts, their composition and, therefore, their bioactivity. Due to the importance of this genus and particularly M. recutita (M. chamomilla), this review focus on its cultivation, factor affecting essential oils' composition and their role in traditional medicine, as antibacterial agents and finally as food preservatives.
BackgroundThe chief aim of this study was to enlist the ethnobotanical uses of wild plants in district Sheikhupura, province Punjab, Pakistan. Due to extreme geographical and climatic conditions, Pakistan has a great floral diversity. Plants have been used by the indigenous people for treatment of different ailments since long. They are still dependent on the plants for their domestic purposes. Moreover, plants are used as first aid to treat diverse ailments such as cold, cough, influenza, asthma, cancer, antidote, gastric and hepatic disorders. The traditional uses of medicinal plants lead to the discovery of natural drugs. This is first quantitative ethnobotanical documentation of medicinal plants in NavaPind and ShahpurVirkan district Sheikhupura, province Punjab, Pakistan.MethodsThis ethnobotanical information was collected from about 400 informants including male and female. Sample size was determined by statistical formula. The informative data was based on semi-structured interviews, group discussions, Questionnaire and field visits. Then the data was analyzed by applying different quantitative indices such as Informant Consent Factor (ICF), Use value (UV), Relative Frequency of Citation (RFC), the Fidelity level (FL) and Jaccard Index (JI).ResultsAlmost 96 plants belonging to 34 families were reported. Most-frequently cited families were Poaceae (16 species) and Fabaceae (15 species). The most dominant life form was herbs (30.20%). The most-used plant parts were leaves (31.14%), followed by whole plant (24.59%), Most common mode of administration is extraction (81.25%). Generally herbal medicines were acquired from fresh plant material. Among all 54.16% plants were toxic, 31.25% were nontoxic, whereas the remaining 14.58% may be toxic or nontoxic because of their dual attitude. Almost 34 species were reported with their different medicinal uses as has been reported in literature.ConclusionsThis ethnobotanical documentation revealed that the plants are still used by natives of rural areas in their day-to-day lives. This study provides basis for the conservation of local flora. Plants with high ICF, UV and FL can be further used for phytochemical and pharmacological studies. This documentation could provide baseline information which can be used to develop new plant-based commercial drugs.Electronic supplementary materialThe online version of this article (doi:10.1186/s13002-017-0151-1) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.