Purpose As a common complication of epithelial ovarian cancer (EOC), malignant ascites contributes to the peritoneal metastasis of EOC. CircRNAs play essential roles in tumor metastasis. However, no circRNAs have been reported to be involved in EOC peritoneal metastasis via ascites. Methods Total of 22 samples from 9 EOC patients containing primary lesions (T), tumor cells from ascites (ASC), and metastatic lesions (M) were included for RNA sequencing to identify differentially expressed circRNAs and mRNAs among different tumors. Bioinformatic analyses, including single-sample Gene Set Enrichment Analysis and soft cluster analysis, were performed to find circRNAs potentially correlated with ascitic metastasis. Wound healing and transwell analysis were performed to evaluate tumor cells metastasis in vitro. Quantitative real-time PCR and western-blot were used for gene expression evaluation. Results According to transcriptomic analysis, ASC showed mesenchymal phenotype while T and M showed epithelial phenotype. 10 circRNAs were differentially expressed among ASC, T, and M. Among them, hsa_circ_0000497 and hsa_circ_0000918 were significantly up-regulated in ASC. Functional analysis showed that both hsa_circ_0000497 and hsa_circ_0000918 promoted metastasis of EOC via epithelial-mesenchymal transition (EMT) in vitro. The regulatory network construction identified 8 miRNAs and 19 mRNAs, and 7 miRNAs and 17 mRNAs as potential downstream target genes of hsa_circ_0000497 and hsa_circ_0000918, respectively, which may play pivotal roles in EOC ascitic metastasis. Conclusions circRNAs (hsa_circ_0000497 and hsa_circ_0000918) contribute to metastasis of EOC via ascites by regulating EMT. These circRNAs may serve as novel potential therapeutic targets or prognostic biomarkers for EOC peritoneal metastasis.
Most endometrial cancers (EC) are diagnosed at an early stage with a favorable prognosis. However, for patients with advanced or recurrent disease, the chemotherapy response rate and overall survival remain poor. A novel in vitro model, tumor organoids, has important value in providing a more individualized treatment plan for tumor patients. However, the slow growth of the established EC organoid seriously hinders the application of EC organoids. Cancer-associated fibroblasts (CAFs), the main component of tumor stroma, have been reported to promote the proliferation of endometrial cancer cell lines and primary endometrial cancer cells in vivo and in vitro. Therefore, we optimized the current endometrial cancer organoid by introducing CAFs isolated from EC lesions. Here we developed long-term expandable organoids from endometrial cancer lesions, which show disease-associated traits and cancer-linked mutations. Based on the co-culture of CAFs and endometrial cancer organoids, we found that CAFs could promote the growth of endometrial cancer organoids, might by secreting factors according to the result that CAFs could also promote the growth. Our research provided a more promising model for the basic and preclinical study of endometrial cancer. Key words: endometrial cancer; organoids; cancer-associated fibroblasts; optimization Endometrial cancer (EC) is the sixth most common female cancer worldwide and the fourth most common in high-income countries [1]. The incidence of EC has risen by 57% since the early 1990s in some populations [1]. There are two types of endometrial cancer: type I EC is estrogen-dependent with a favorable prognosis (85% 5-years survival rate); type II EC is
Background CD276 (also known as B7-H3), a newly discovered immunoregulatory protein that belongs to the B7 family, is a significant and attractive target for cancer immunotherapy. Existing evidence demonstrates its pivotal role in the tumorigenesis of some cancers. However, there still lacks a systematic and comprehensive pan-cancer analysis of the role of CD276 in tumor immunology and prognosis. Methods We explored and validated the mRNA and protein expression levels of CD276 in multiple tumors through public databases and clinical tissues specimens. The Univariate Cox regression analysis and Kaplan–Meier analysis were applied to assess the prognostic value of CD276. The correlation between CD276 expression and clinical characteristics and immunological features in diverse tumors was also explored. GSEA was performed to illuminate the biological function and involved pathways of CD276. Moreover, the CellMiner database was used to interpret the relationship between CD276 and multiple chemotherapeutic agents. CCK-8 assay was performed to validate the biological function of CD276 in vitro. Results In general, CD276 was differentially expressed between most tumor tissues and their corresponding normal tissues. Higher expression levels of CD276 were associated with poorer survival outcomes in most tumor cohorts from TCGA. There was a close correlation between CD276 expression and clinical features, the infiltration levels of specific immune cells, immune subtypes, TMB, MSI, MMR, recognized immunoregulatory genes and drug sensitivity across diverse human cancers. The scRNA-seq data analysis further revealed that CD276 was mainly expressed on the tumor infiltrating macrophages. Additionally, in vitro experiments showed that knockdown of CD276 inhibited the proliferation of ovarian cancer (OV) and cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC) cell lines. Conclusion CD276 is a potent biomarker for predicting the prognosis and immunological features in some tumors, and it may play a critical role in the tumor immune microenvironment (TIME) through macrophage-associated signaling.
Purpose As a common complication of epithelial ovarian cancer (EOC), malignant ascites contribute to the peritoneal metastasis of EOC. CircRNAs play essential roles in tumor metastasis. However, no circRNAs have been reported to be involved in EOC peritoneal metastasis via ascites.MethodsTotal of 22 samples from 9 EOC patients containing primary lesions (T), tumor cells from ascites (ASC), and metastatic lesions (M) was included for RNA sequencing to identify differentially expressed circRNAs and mRNAs among different tumors. Bioinformatic analyses, including single-sample Gene Set Enrichment Analysis and soft cluster analysis, were performed to find circRNAs potentially correlated with ascitic metastasis. Wound healing and transwell analysis were performed to evaluate tumor cells metastasis in vitro. Quantitative real-time PCR and western-blot were used for gene expression evaluation.ResultsAccording to transcriptomic analysis, ASC showed mesenchymal phenotype while T and M showed epithelial phenotype. 10 circRNAs were differentially expressed among ASC, T, and M. Among them, hsa_circ_0000497 and hsa_circ_0000918 were significantly up-regulated in ASC. Functional analysis showed that both hsa_circ_0000497 and hsa_circ_0000918 promoted metastasis of EOC via epithelial-mesenchymal transition (EMT) in vitro. The regulatory network construction identified 8 miRNAs and 19 mRNAs, and 7 miRNAs and 17 mRNAs as potential downstream target genes of hsa_circ_0000497 and hsa_circ_0000918, respectively, which may play pivotal roles in EOC ascitic metastasis.Conclusions circRNAs (hsa_circ_0000497 and hsa_circ_0000918) contribute to metastasis of EOC via ascites by regulating EMT. These circRNAs may serve as novel potential therapeutic targets or prognostic biomarkers for EOC peritoneal metastasis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.