Fossil crocodyliforms discovered in recent years have revealed a level of morphological and ecological diversity not exhibited by extant members of the group. This diversity is particularly notable among taxa of the Cretaceous Period (144-65 million years ago) recovered from former Gondwanan landmasses. Here we report the discovery of a new species of Cretaceous notosuchian crocodyliform from the Rukwa Rift Basin of southwestern Tanzania. This small-bodied form deviates significantly from more typical crocodyliform craniodental morphologies, having a short, broad skull, robust lower jaw, and a dentition with relatively few teeth that nonetheless show marked heterodonty. The presence of morphologically complex, complementary upper and lower molariform teeth suggests a degree of crown-crown contact during jaw adduction that is unmatched among known crocodyliforms, paralleling the level of occlusal complexity seen in mammals and their extinct relatives. The presence of another small-bodied mammal-like crocodyliform in the Cretaceous of Gondwana indicates that notosuchians probably filled niches and inhabited ecomorphospace that were otherwise occupied by mammals on northern continents.
Newly exposed cave sediments at the Malapa site include a flowstone layer capping the sedimentary unit containing the Australopithecus sediba fossils. Uranium-lead dating of the flowstone, combined with paleomagnetic and stratigraphic analysis of the flowstone and underlying sediments, provides a tightly constrained date of 1.977 ± 0.002 million years ago (Ma) for these fossils. This refined dating suggests that Au. sediba from Malapa predates the earliest uncontested evidence for Homo in Africa.
The upper Stormberg Group (Elliot and Clarens formations) of the main Karoo Basin is well-known for its fossil vertebrate fauna, comprising early branching members of lineages including mammals, dinosaurs, and testudinates. Despite 150 years of scientific study, the upper Stormberg Group lacks radioisotopic age constraints and remains coarsely dated via imprecise faunal correlations. Here we synthesise previous litho-and magnetostratigraphic studies, and present a comprehensive biostratigraphic review of upper Stormberg fauna. We also present the results of the first geochronological assessment of the unit across the basin, using U-Pb dates derived from detrital zircons obtained from tuffaceous sandstones and siltstones, the youngest of which are considered maximum depositional ages. Our results confirm that the Elliot Formation contains the Triassic-Jurassic boundary, making it one of the few fossiliferous continental units that records the effects of the end-Triassic Mass Extinction event. Our work suggests a mid-Norian-Rhaetian age for the lower Elliot Formation and a Hettangian-Sinemurian age for the upper Elliot Formation, although the precise stratigraphic position of the Triassic/Jurassic (Rhaetian/Hettangian) boundary remains somewhat uncertain. A mainly Pliensbachian age is obtained for the Clarens Formation. The new dates allow direct comparison with better-calibrated Triassic-Jurassic faunas of the Western Hemisphere (e.g., Chinle and Los Colorados formations). We show that sauropodomorph, but not ornithischian or theropod, dinosaurs were well-established in the main Karoo Basin ~220 million years ago, and that typical Norian faunas (e.g., aetosaurs, phytosaurs) are either rare or absent in the lower Elliot Formation, which is paucispecific compared to the upper Elliot. While this is unlikely the result of geographic sampling biases, it could be from historical sampling intensity differences.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.