Previous studies have established that a subset of head and neck tumors contains human papillomavirus (HPV) sequences and that HPV-driven head and neck cancers display distinct biological and clinical features. HPV is known to drive cancer by the actions of the E6 and E7 oncoproteins, but the molecular architecture of HPV infection and its interaction with the host genome in head and neck cancers have not been comprehensively described. We profiled a cohort of 279 head and neck cancers with next generation RNA and DNA sequencing and show that 35 (12.5%) tumors displayed evidence of high-risk HPV types 16, 33, or 35. Twentyfive cases had integration of the viral genome into one or more locations in the human genome with statistical enrichment for genic regions. Integrations had a marked impact on the human genome and were associated with alterations in DNA copy number, mRNA transcript abundance and splicing, and both inter-and intrachromosomal rearrangements. Many of these events involved genes with documented roles in cancer. Cancers with integrated vs. nonintegrated HPV displayed different patterns of DNA methylation and both human and viral gene expressions. Together, these data provide insight into the mechanisms by which HPV interacts with the human genome beyond expression of viral oncoproteins and suggest that specific integration events are an integral component of viral oncogenesis.cancer | head and neck | papilloma virus | genome rearrangement | integration sites H ead and neck cancer (HNC) is a heterogeneous group of tumors characterized by a common anatomic origin, and most such tumors develop from within the mucosa and are classified as head and neck squamous cell carcinomas (HNSCCs) (1). HNSCC, the sixth most common cancer diagnosed worldwide and the eighth most common cause of cancer death (2), is frequently associated with human papillomavirus (HPV) infection (3, 4). Depending on the anatomic site of the tumor, HPV prevalence is estimated at 23-36% (5). HPV-positive HNSCCs form a distinct subset of HNCs that differs from HPV-negative HNSCCs in tumor biology and clinical characteristics, including superior clinical outcomes (6-9).The molecular pathogenesis of HPV-driven HNSCC also seems distinct from HPV-negative tumors, with previous studies showing a divergent spectrum of alterations in gene expression, mutations, amplifications, and deletions as well as distinct epigenome alterations (10-15). HPV is known to drive tumorigenesis through the actions of its major oncoproteins E6 and E7, which target numerous cellular pathways, including inactivation of p53 and the retinoblastoma (Rb) protein (16-18). Together with E5, they also play an important role in immune evasion, being involved in both innate and adaptive immunity (19,20).Initially after infection, HPV is identified in circular extrachromosomal particles or episomes. A critical step in progression to cancer is the integration of viral DNA into the host cell Significance A significant proportion of head and neck cancer is driven by human papil...
: Cystic cervical lymph node metastasis is strongly associated with HPV-related tonsillar HNSCC: (c) 2008 Wiley Periodicals, Inc. Head Neck 2008.
IMPORTANCE Human papillomavirus type 16 (HPV-16) is a major causative factor in oropharyngeal squamous cell carcinoma (OPSCC). The detection of primary OPSCC is often delayed owing to the challenging anatomy of the oropharynx. OBJECTIVE To investigate the feasibility of HPV-16 DNA detection in pretreatment and posttreatment plasma and saliva and its potential role as a marker of prognosis. DESIGN, SETTING, AND PARTICIPANTS This is a retrospective analysis of a prospectively collected cohort. Among a cohort of patients with oropharyngeal and unknown primary squamous cell carcinoma with known HPV-16 tumor status from the Johns Hopkins Medical Institutions and Greater Baltimore Medical Center (from 1999 through 2010), 93 patients were identified with a complete set of pretreatment and posttreatment plasma or saliva samples, of which 81 patients had HPV-16–positive tumors and 12 patients had HPV-16–negative tumors. Real-time quantitative polymerase chain reaction was used to detect HPV-16 E6 and E7 DNA in saliva and plasma samples. MAIN OUTCOMES AND MEASURES Main outcomes included sensitivity, specificity, negative predictive value of combined saliva and plasma pretreatment HPV-16 DNA status for detecting tumor HPV-16 status, as well as the association of posttreatment HPV DNA status with clinical outcomes, including recurrence-free survival and overall survival. RESULTS The median follow-up time was 49 months (range, 0.9–181.0 months). The sensitivity, specificity, negative predictive value, and positive predictive value of combined saliva and plasma pretreatment HPV-16 DNA status for detecting tumor HPV-16 status were 76%, 100%, 42%, and 100%, respectively. The sensitivities of pretreatment saliva or plasma alone were 52.8%and 67.3%, respectively. In a multivariable analysis, positive posttreatment saliva HPV status was associated with higher risk of recurrence (hazard ratio [HR], 10.7; 95% CI, 2.36–48.50) (P = .002). Overall survival was reduced among those with posttreatment HPV-positive status in saliva (HR, 25.9; 95% CI, 3.23–208.00) (P = .002) and those with HPV-positive status in either saliva or plasma but not among patients with HPV-positive status in plasma alone. The combined saliva and plasma posttreatment HPV-16 DNA status was 90.7%specific and 69.5%sensitive in predicting recurrence within 3 years. CONCLUSIONS AND RELEVANCE Using a combination of pretreatment plasma and saliva can increase the sensitivity of pretreatment HPV-16 status as a tool for screening patients with HPV-16–positive OPSCC. In addition, analysis of HPV-16 DNA in saliva and plasma after primary treatment may allow for early detection of recurrence in patients with HPV-16–positive OPSCC.
Approximately 90% of MTCs had mutually exclusive mutations in RET, HRAS, and KRAS, suggesting that RET and RAS are the predominant driver pathways in MTC. Relatively few mutations overall and no commonly recurrent driver mutations other than RET, HRAS, and KRAS were seen in the MTC exome.
Hepatocellular carcinoma (HCC) is one of the most common and lethal malignant tumors worldwide. HCC is a complex process that is associated with several etiological factors, which in turn result in aberrant activation of different cellular and molecular pathways and the disruption of balance between activation and inactivation of protooncogenes and tumor suppressor genes, respectively. Since HCC most often occurs in the setting of a diseased or cirrhotic liver and most of the patients are diagnosed at the late stage of disease, prognosis is generally poor. At present, limited treatment options with marginal clinical benefits are available. Systemic therapy, particularly in the form of conventional cytotoxic drugs, are generally ineffective. In recent years, molecular-targeted therapies have been clinically used to treat various cancers, including liver cancer. This approach inhibits the growth of tumor cells by interfering with molecules that are involved in carcinogenesis, which makes it more selective and specific than cytotoxic chemotherapy. Many clinical trials have been carried out while using molecular targeted drugs in advanced HCC with many more in progress. The clinical trials in HCC to date have evaluated a single-targeted therapy alone, or two or more targeted therapies in parallel. The aim of this review is to provide insight of various molecular mechanisms, leading to HCC development and progression, and also the range of experimental therapeutics for patients with advanced HCC. The review will summarize different clinical trials data the successes and failures of these treatments, as well as the most effective and approved drugs designed against HCC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.