In a classical multiple linear regression analysis, multicollinearity and autocorrelation are two main basic assumption violation problems. When multicollinearity exists, biased estimation techniques such as Maximum Likelihood, Restricted Maximum Likelihood and most recent the K-L estimator by Kibria and Lukman [1] are preferable to Ordinary Least Square. On the other hand, when autocorrelation exist in the data, robust estimators like Cochran Orcutt and Prais-Winsten [2] estimators are preferred. To handle these two problems jointly, the study combines the K-L with the Prais-Winsten’s two-stage estimator producing the Two-Stage K-L estimator proposed by Zubair & Adenomon [3]. The Mean Square Error (MSE) and Root Mean Square Error (RMSE) criterion was used to compare the performance of the estimators. Application of the estimators to two (2) real life data set with multicollinearity and autocorrelation problems reveals that the Two Stage K-L estimator is generally the most efficient.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.