Abstract. We prove the Effective Bogomolov Conjecture, and so the Bogomolov Conjecture, over a function field of characteristic 0 by proving Zhang's Conjecture about certain invariants of metrized graphs. In the function field case, these conjectures were previously known to be true only for curves of genus at most 4 and a few other special cases. We also either verify or improve the previous results. We relate the invariants involved in Zhang's Conjecture to the tau constant of metrized graphs. Then we use and extend our previous results on the tau constant. By proving another Conjecture of Zhang, we obtain a new proof of the slope inequality for Faltings heights on moduli space of curves.
This paper concerns the tau constant, which is an important invariant of a metrized graph, and which has applications to arithmetic properties of curves. We give several formulas for the tau constant, and show how it changes under graph operations including deletion of an edge, contraction of an edge, and union of graphs along one or two points. We show how the tau constant changes when edges of a graph are replaced by arbitrary graphs. We prove Baker and Rumely's lower bound conjecture on the tau constant for several classes of metrized graphs.
The tau constant is an important invariant of a metrized graph, and it has applications in arithmetic properties of curves. We show how the tau constant of a metrized graph changes under successive edge contractions and deletions. We discover identities which we call "contraction", "deletion", and "contraction-deletion" identities on a metrized graph. By establishing a lower bound for the tau constant in terms of the edge connectivity, we prove that Baker and Rumely's lower bound conjecture on the tau constant holds for metrized graphs with edge connectivity 5 or more. We show that proving this conjecture for 3-regular graphs is enough to prove it for all graphs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.