Waterbomb structures are origami-inspired deformable structural components used in new types of robots. They have a unique radially deployable ability that enables robots to better adapt to their environment. In this paper, we propose a series of new waterbomb structures with square, rectangle, and parallelogram base units. Through quasi-static axial and radial compression experiments and numerical simulations, we prove that the parallelogram waterbomb structure has a twist displacement mode along the axial direction. Compared with the square waterbomb structure, the proposed optimal design of the parallelogram waterbomb structure reduces the critical axial buckling load-to-weight ratio by 55.4% and increases the radial stiffness-to-weight ratio by 67.6%. The significant increase in the radial stiffness-to-weight ratio of the waterbomb structure and decrease in the critical axial buckling load-to-weight ratio make the proposed origami pattern attractive for practical robotics applications.
Waterbomb structures are origami-inspired deformable structural components used in new types of robots. They have a unique radially deployable ability that enables robots to better adapt to their environment. In this paper, we propose a series of new waterbomb structures with square, rectangle, and parallelogram base units. Through quasi-static axial and radial compression experiments and numerical simulations, we prove that the parallelogram waterbomb structure has a twist displacement mode along the axial direction. Compared with the square waterbomb structure, the proposed optimal design of the parallelogram waterbomb structure reduces the critical axial buckling load-to-weight ratio by 55.4% and increases the radial stiffness-to-weight ratio by 67.6%. The significant increase in the radial stiffness-to-weight ratio of the waterbomb structure and decrease in the critical axial buckling load-to-weight ratio make the proposed origami pattern attractive for practical robotics applications.
In this paper, a new water-bomb wheel modeling method is proposed. Based on the water-bomb wheel model, an expandable robot with a multi-link support structure and water-bomb structure is designed and manufactured. A parameterized kinematics solution method is proposed for this variable-diameter wheel robot, which enables the robot to obtain highly reliable odometer information by fusing encoder and IMU information in all states. Based on the parameterized kinematics solution method, SLAM and autonomous navigation system were implemented using the ROS robot operating system as the software platform, and simulation experiments and physical prototype experiments were carried out.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.