The purpose of this paper is to explore a novel image encryption algorithm that is developed by combining the fractional-order Chua’s system and the 1D time-fractional diffusion system of order α∈(0,1]. To this end, we first discuss basic properties of the fractional-order Chua’s system and the 1D time-fractional diffusion system. After these, a new spatiotemporal chaos-based cryptosystem is proposed by designing the chaotic sequence of the fractional-order Chua’s system as the initial condition and the boundary conditions of the studied time-fractional diffusion system. It is shown that the proposed image encryption algorithm can gain excellent encryption performance with the properties of larger secret key space, higher sensitivity to initial-boundary conditions, better random-like sequence and faster encryption speed. Efficiency and reliability of the given encryption algorithm are finally illustrated by a computer experiment with detailed security analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.