Abstract. The 3 August 2014 Ludian, China, Ms = 6.5 earthquake caused many large landslides. The biggest occurred at Hongshiyan near the epicenter, had a volume of 1.0 × 107 m3 and dammed the Niulanjiang River, creating a large lake. Post-event field investigations yielded detailed data on the following aspects: rock structure of the landslide, the local lithology and geometry of the area around the landslide dam and composition and grain sizes of the debris avalanche. Based on these data, this work analyzes the geology and topography of the Hongshiyan area, and explores reasons for the occurrence of an unusually large landslide at this location. Our analysis suggests the following conditions are responsible for this catastrophic event. (1) Due to recent crustal deformation, intense incision on the river increased topographic relief with steep slopes and scarps. (2) Combined structures, including unloading fissures, high-angle joints and low-angle beds along the river, as well as an upper-strong and lower-weak interlayer structure on the slope, especially the existence of weak layers in the slope, are important factors that contribute to this large failure. (3) Hongshiyan lies near an active fault, where intense crustal deformation has resulted in rock fractures and weathering, and frequent earthquakes may progressively reduce the strength of the slope. (4) During the Ms = 6.5 earthquake, the terrain and site conditions led to abnormally strong ground shaking. The combined impacts of these factors triggered a very large landslide during a moderate-sized earthquake.
The seismogenic fault and the dynamic mechanism of the Ning'er, Yunnan Province M S 6.4 earthquake of June 3, 2007 are studied on the basis of the observation data of the surface fissures, sand blow and water eruption, landslide and collapse associated with the earthquake, incorporating with the data of geologic structures, focal mechanism solutions and aftershock distribution for the earthquake area. The observation of the surface fissures reveals that the Banhai segment of the NW-trending Ning'er fault is dominated by right-lateral strike-slip, while the NNE-trending fault is dominated by left-lateral strike-slip. The seismo-geologic hazards are concentrated mainly within a 330°-extending zone of 13.5 km in length and 4 km in width. The major axis of the isoseismal is also oriented in 330° direction, and the major axis of the seismic intensity VIII area is 13.5 km long. The focal mechanism solutions indicate that the NW-trending nodal plane of the Ning'er M S 6.4 earthquake is dominated by right-lateral slip, while the NE-trending nodal plane is dominated by left-lateral slip. The preferred distribution orientation of the aftershocks of M S ≥2 is 330°, and the focal depths are within the range of 3~12 km, predominantly within 3~10 km. The distribution of the aftershocks is consistent with the distribution zone of the seismo-geologic hazards. All the above-mentioned data indicate that the Banhai segment of the Ning'er fault is the seismogenic fault of this earthquake. Moreover, the driving force of the Ning'er earthquake is discussed in the light of the active block theory. It is believed that the northward pushing of the Indian plate has caused the eastward slipping of the Qinghai-Tibetan Plateau, which has been transformed into the southeastern-southernward squeezing of the southwest Yunnan region. As a result, the NW-trending faults in the vicinity of the Ning'er area are dominated by right-lateral strike-slip, while the NE-trending faults are dominated by left-lateral strike-slip. This tectonic framework might be the main cause of the frequent occurrence of M S 6.0~6.9 earthquakes in the area.
Abstract. The 3 August 2014 Ludian, China Ms 6.5 earthquake has spawned a mass of severe landslides. Of them the biggest occurred at Hongshiyan near the epicenter, which has 1200 × 104 m3, clogging the Niulanjiang River, and creating a large dammed lake. Post-event field investigations yield detailed data on following aspects: rock structure of landslides, lithology, and geometry of the dam, composition and grain sizes of debris avalanches. Based on these data, this work further analyzes the geology and topography of the Hongshiyan area, and explores the mechanism for occurrence of such an unusual big landslide at this place. Our analysis suggests the following conditions are responsible for this catastrophic event: (1) during the Ms 6.5 earthquake, the special terrain and site conditions led to abnormally strong ground shake. (2) Hongshiyan lies nearby an active fault, where intense crustal deformation resulted in rock fractures and weathering. (3) Intense incision on the river increased topographic relief with steep slopes and scarps. (4) Combined structures, including unloading fissures, high-angle joints and low-angle beds along the river as well as upper-tough and lower-soft structure on the slopes. It is the joint functions of these conditions that triggered such seldom seen landslides during a moderated-sized earthquake.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.