Soil pollution with heavy metals has become a global issue because of anthropogenic activities causing gradual loss of soil nutrients and fertility, thus, reducing agricultural production. Biochar is recommended as an organic and environment-friendly option to address the issue of nutrient deficiency and heavy metal pollution. The present study was performed with biochar derived from Cannabis sativa to surplus soil nutrient pool and heavy metal immobilization. The characterization through scanning electron microscopy (SEM) revealed that biochar was brittle, porous, alkaline, and labile in nature. The elemental composition of biochar was carbon (75.3%), oxygen (19.2%), calcium (3.9%), potassium (1.5%), and chlorine (0.08%) determined by energy dispersive X-ray spectroscopy. Fourier transform infrared (FTIR) spectroscopy revealed the occurrence of carbonyl group, phenols, and alcohols in biochar derived from Cannabis sativa. The soil was spiked with lead and cadmium salt solution (25 ppm and 250) and incubated for 30 days. It was found that biochar amendments (1% = BC1 and 5% = BC5) significantly (p < 0.05) increased the soil physicochemical properties such as pH, electrical conductivity (EC), oxidizable organic carbon (OC), total organic carbon (TOC), and organic matter (OM). In the case of BC5, OC increased by 189.86%, TOC increased by 189.13%, and OM increased by 188.68%, as compared to the control. Similarly, soil available nitrogen (AN) and soil available phosphorous improved by 233.3% and 101.79%, respectively, compared to control. On the other hand, BC1 showed a significant reduction (p < 0.05) in lead and cadmium concentrations by 45.74% and 56.58%, respectively, in comparison to BC5 and control. In conclusion, we suggest that Cannabis sativa biochar may serve as an effective treatment for enhancing soil fertility and remediation of soil polluted with heavy metals.
Charsadda to Peshawar road is characterized with diverse surrounding environment of residential settlements,industrial zones, commercial and agricultural sectors along with heavy traffic route which is contributing to heavy metalpollution. This study is focused on heavy metals: Cadmium (Cd), Chromium (Cr) and Lead (Pb) contribution to theatmospheric pollution level. The heavy metals pollution assessment is carried out by sample collection (soil dust samplesand two vegetation species Cyperus esculentus and Cynodon dactylon) from ten sites along the road which were analyzedby using atomic absorption spectrometry (AAS). Average values of pollution index (PI) as well as average value ofpollution load index (PLI) for Cr, Cd and Pb in case of Cyperus esculentus, Cynodon dactylon and dust were calculated.Geo-accumulation index of roadside dust for Cr, Cd and Pb were estimated along with ecological risk due to roadsidedust using potential ecological risk index (RI). The analyses of this study suggest that the indices for the Cd metal foundto be of more concern than Cr or Pb which correspond to middle or low level of pollution. Statistical analysis revealedthat the three metals had a weak to moderate relationship with one another indicating multiple and somewhat similarsources of pollution.
Charsadda to Peshawar road is characterized with diverse surrounding environment of residential settlements,industrial zones, commercial and agricultural sectors along with heavy traffic route which is contributing to heavy metalpollution. This study is focused on heavy metals: Cadmium (Cd), Chromium (Cr) and Lead (Pb) contribution to theatmospheric pollution level. The heavy metals pollution assessment is carried out by sample collection (soil dust samplesand two vegetation species Cyperus esculentus and Cynodon dactylon) from ten sites along the road which were analyzedby using atomic absorption spectrometry (AAS). Average values of pollution index (PI) as well as average value ofpollution load index (PLI) for Cr, Cd and Pb in case of Cyperus esculentus, Cynodon dactylon and dust were calculated.Geo-accumulation index of roadside dust for Cr, Cd and Pb were estimated along with ecological risk due to roadsidedust using potential ecological risk index (RI). The analyses of this study suggest that the indices for the Cd metal foundto be of more concern than Cr or Pb which correspond to middle or low level of pollution. Statistical analysis revealedthat the three metals had a weak to moderate relationship with one another indicating multiple and somewhat similarsources of pollution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.