In vitro meat production is a novel idea of producing meat without involving animals with the help of tissue engineering techniques. This biofabrication of complex living products by using various bioengineering techniques is a potential solution to reduce the ill effects of current meat production systems and can dramatically transform traditional animal-based agriculture by inventing "animal-free" meat and meat products. Nutrition-related diseases, food-borne illnesses, resource use and pollution, and use of farm animals are some serious consequences associated with conventional meat production methods. This new way of animal-free meat production may offer health and environmental advantages by reducing environmental pollution and resource use associated with current meat production systems and will also ensure sustainable production of designer, chemically safe, and disease-free meat as the conditions in an in vitro meat production system are controllable and manipulatable. Theoretically, this system is believed to be efficient enough to supply the global demand for meat; however, establishment of a sustainable in vitro meat production would face considerably greater technical challenges and a great deal of research is still needed to establish this animal-free meat culturing system on an industrial scale.
Storage quality of chicken seekh kababs extended with different legumes at optimum level viz. 15% cowpea, 15% green gram and 10% black bean were assessed in terms of physico-chemical, proximate, microbiological and sensory properties under aerobic packaging conditions at refrigeration temperature (4 ± 1°C). The chicken seekh kababs were prepared from spent hens meat by low power microwave method and extended with optimum level of different legume (hydrated 1:1 w/w) pastes replacing lean meat in the formulation. The chicken seekh kababs formulated without any extender served as control and were compared with extended chicken seekh kababs. The kababs were aerobically packaged in low density polyethylene (LDPE) pouches and were analyzed at a regular interval of 0, 7, 14 and 21 days during refrigerated storage at 4 ± 1°C. The results indicated a significant (p < 0.05) decrease in moisture content of the kababs whereas the fat and ash content increased significantly (p < 0.05) over the period of storage. Protein percentage showed a non-significant (p > 0.05) increase and almost all the sensory attributes showed a declining trend with advancement of storage. Total plate count and psychrophillic count also increased significantly (p < 0.05) whereas coliforms were not detected throughout the period of storage. The products were acceptable throughout the storage period.
Defined as meat cultured in a laboratory within a bioreactor under controlled artificial conditions, in vitro meat is a relatively recent area that has opened a whole universe of possibilities and opportunities for the meat sector. With improved chemical and microbial safety and varied options, in vitro meat has been proposed as a green, healthy, environmentally friendly, and nutritionally better product that is free from animal suffering and death. Cell culture and tissue culture are the most probable technologies for the development of this futuristic muscle product. However, there are many challenges in the production of a suitable product at an industrial scale under a sustainable production system and a great body of research is required to fill the gaps in our knowledge. Many materials used in the product development are novel and untested within the food industry and demand urgent regulatory and safety assessment systems capable of managing any risks associated with the development of cultured meat. The future of this product will depend on the actions of governments and regulatory agencies. This article highlights emerging biotechnological options for the development of cultured meat and suggests ways to integrate these emerging technologies into meat research. It considers the problems and possibilities of developing cultured meat, opportunities, ethical issues as well as emerging safety and regulatory issues in this area.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.