Aluminum alloys are the subject of increasing interest in the automotive, as well as aircraft industries. Concerning the assembly, welding was extensively applied in the car industry. Nevertheless, welding defects generated during the process result in reduction in strength of both the weld; and heat affected zone which could limit its applications. Electron beam welding (EBW) has unique advantages over other traditional fusion welding methods due to its high-energy density, deep penetration, large depth-to-width ratio and the resulting very small heat affected zone. Optimization of EB welded joint of 2219 Al-alloy, from the yield strength, hardness and bead geometry point of view, is the topic of this study. Taguchi methodology with grey relation analysis has been applied to find the optimal welding parameters for welding of a sheet of the mentioned aluminum alloy with electron beam. The optimal welding parameters have been selected and verified experimentally.
Aiming to reduce the weight of components, thus allowing a profit in terms of energy saving, automotive industry as well as aircraft industry extensively uses aluminum alloys. The most widely used joining technology in aircraft industry is riveting, while welding seems to be used in the car industry in the case of aluminum alloys. However, welding technology is characterized by many defects, such as gas porosity; oxide inclusions; solidification cracking (hot tearing); and reduced strength in both the weld and the heat affected zones which could limit its development. Many techniques are used for aluminum alloys welding, among them is electron beam welding (EBW), which has unique advantages over other traditional fusion welding methods due to high-energy density, deep penetration, large depth-to-width ratio, and small heat affected zone. The welding parameters that yield to optimal weld joint have been previously obtained. These optimal parameters were validated by welding a specimen using these parameters. To evaluate this optimal weld joint, complete, microstructural observations and characterization have been carried out using scanning electron microscopy, optical microscopy, and energy dispersive X-ray analysis. This evaluation leads to description and quantification of the solidification process within this weld joint.
Aluminum's unique properties, e.g. light weight, high strength, and resistance to corrosion, make it an ideal material for use in conventional and novel applications. Aluminum has become increasingly used in the production of aerospace equipment, automobiles and trucks, packaging of food and beverages. However it suffers from poor joint strength when welded by conventional fusion welding. In this investigation an attempt has been made to improve the welded joint strength through using of electron beam welding (EBW). Due to special features of EBW, e.g. high energy density and accurately controllable beam size and location, in many cases it has proven to be an efficient method for joining difficult to weld materials. In this paper, the effects of EBW parameters on the ultimate tensile strength (UTS) has been investigated, The experiments were based on one-variable-at-a-time (OVAT) method,
Aluminum alloys are the subject of increasing interest in the automotive industry, as well as the aircraft industry, aiming to reduce the weight of components and also allowing a profit in term of energy saving. In assembly process, riveting has been widely used in the aircraft industry, whereas welding seems to be available in the car industry in the case of aluminum alloys. Nevertheless, conventional fusion welding can generate defects, such as gas porosity, oxide inclusions, solidification cracking (hot tearing), reduced strength in both the weld, and heat-affected zone (HAZ), which could limit its development. Electron beam welding (EBW) has unique advantages over other traditional fusion welding methods due to high energy density, deep penetration, large depth-to-width ratio, and small HAZ. EBW has been developed for many years and is being increasingly implemented in various industrial applications. In many cases, it has proven to be an efficient method for joining difficult to weld materials. One of the major problems associated with the EBW is how to select a proper combination of the process parameters because improper selection of these parameters causes defects in the weld joint, which could seriously influence the weld mechanical properties. This work introduces an overview of the EBW process, its parameters, process simulation, process optimization, and finally characterization of the electron beam weld joint of 2219 aluminum alloy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.